Convergent replication of mouse synthetic prion strains

小鼠合成朊病毒株的趋同复制

阅读:11
作者:Sina Ghaemmaghami, David W Colby, Hoang-Oanh B Nguyen, Shigenari Hayashi, Abby Oehler, Stephen J DeArmond, Stanley B Prusiner

Abstract

Prion diseases are neurodegenerative disorders characterized by the aberrant folding of endogenous proteins into self-propagating pathogenic conformers. Prion disease can be initiated in animal models by inoculation with amyloid fibrils formed from bacterially derived recombinant prion protein. The synthetic prions that accumulated in infected organisms are structurally distinct from the amyloid preparations used to initiate their formation and change conformationally on repeated passage. To investigate the nature of synthetic prion transformation, we infected mice with a conformationally diverse set of amyloids and serially passaged the resulting prion strains. At each passage, we monitored changes in the biochemical and biological properties of the adapting strain. The physicochemical properties of each synthetic prion strain gradually changed on serial propagation until attaining a common adapted state with shared physicochemical characteristics. These results indicate that synthetic prions can assume multiple intermediate conformations before converging into one conformation optimized for in vivo propagation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。