Impact of Ocular Surface Temperature on Tear Characteristics: Current Insights

眼表温度对泪液特性的影响:最新见解

阅读:5
作者:Ankit M Shah, Anat Galor

Abstract

Infrared (IR) thermographic assessment of ocular surface temperature (OST) is gaining interest as an adjuvant method to evaluate the ocular surface. It is a quick, non-invasive test that causes minimal, if any, discomfort to patients. The purpose of this article was to summarize research on how OST relates to tear film parameters and dry eye disease (DED). PubMed, Google Scholar, and Scopus searches for specific terms were carried out and eligible articles reviewed. OST of the central cornea is ~34-35°C when measured as a single time-point (typically right after a blink). Dynamically, OST values decrease over time at a rate of ~ -0.01 °C/s in healthy eyes. Single time-point OST values are impacted by temperature, with positive correlations noted with both ambient (1°C↓ results in ~0.16°C↓ in OST) and body (1°C↑ results in ~0.98°C↑ in OST) temperature. Single time-point OST values are also impacted by tear parameters, with negative correlations noted with tear break-up time (TBUT; r=-0.61) and positive correlations with lipid layer thickness (~r=0.50). Dynamically, the rate of OST cooling over the interblink period correlates with various tear parameters including Schirmer's test scores (r=-0.39), tear meniscus height (r=-0.52) and the rate of tear film break-up (r=-0.74). These data imply that OST decreases more rapidly in individuals with greater tear production, larger tear volumes, and shorter tear break-up times (faster rates of tear film break-up). There are discrepancies in relationships between OST and DED across studies, which is not surprising given that DED encompasses a number of different phenotypic presentations. However, most studies found that OST decreases at a more rapid rate in DED vs. control groups. As such, cooling rate may have utility as a screening tool in DED in combination with established point-of-care tests.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。