Conclusion
This model combines cost-effectiveness and simplicity of a rodent model, while maximizing BIC, making it an excellent candidate for evaluation of new surfaces.
Methods
Ti screws (0.76 mm Ø × 2 mm length) were implanted into the maxillary diastema of 52 adult male Lewis rats. Peri-implant tissues were evaluated 2, 7, 14, and 30 days after implantation (n = 13). Seven of the 13 samples underwent microtomographic analysis, histology, histomorphometry, and immunohistochemistry to track healing parameters. The remaining six samples underwent quantitative polymerase chain reaction (qPCR) to evaluate gene expression of inflammation and bone remodeling markers over time.
Objective
There is a need to improve the predictability of osseointegration in implant dentistry. Current literature uses a variety of in vivo titanium (Ti) implantation models to investigate failure modes and test new materials and surfaces. However, these models produce a variety of
Results
This model achieved a 78.5% success rate. Successful implants had a bone to implant contact (BIC)% of 68.86 ± 3.15 at 30 days on average. Histologically, healing was similar to other rodent models: hematoma and acute inflammation at 2 days, initial bone formation at 7, advanced bone formation and remodeling at 14, and bone maturation at 30. qPCR indicated the highest expression of bone remodeling and inflammatory markers 2-7 days, before slowly declining to nonsurgery control levels at 14-30 days.
