Amniotic fluid-derived stem cells: potential factories of natural and mimetic strategies for congenital malformations

羊水干细胞:先天畸形的自然和模拟策略的潜在工厂

阅读:4
作者:Cristiane S R Fonteles, John W Steele, Daniel Ifeoluwa Idowu, Beck Burgelin, Richard H Finnell, Bruna Corradetti

Background

Mesenchymal stem cells (MSCs) from gestational tissues represent promising strategies for in utero treatment of congenital malformations, but plasticity and required high-risk surgical procedures limit their use. Here we propose natural exosomes (EXOs) isolated from amniotic fluid-MSCs (AF-MSCs), and their mimetic counterparts (MIMs), as valid, stable, and minimally invasive therapeutic alternatives.

Conclusions

The present data confirms the potential application of EXOs for the prenatal repair of neural tube defects and proposes MIMs as prospective vehicles to prevent congenital malformations caused by in utero exposure to drugs.

Methods

MIMs were generated from AF-MSCs by combining sequential filtration steps through filter membranes with different porosity and size exclusion chromatography columns. Physiochemical and molecular characterization was performed to compare them to EXOs released from the same number of cells. The possibility to exploit both formulations as mRNA-therapeutics was explored by evaluating cell uptake (using two different cell types, fibroblasts, and macrophages) and mRNA functionality overtime in an in vitro experimental setting as well as in an ex vivo, whole embryo culture using pregnant C57BL6 dams.

Results

Molecular and physiochemical characterization showed no differences between EXOs and MIMs, with MIMs determining a 3-fold greater yield. MIMs delivered a more intense and prolonged expression of mRNA encoding for green fluorescent protein (GFP) in macrophages and fibroblasts. An ex-vivo whole embryo culture demonstrated that MIMs mainly accumulate at the level of the yolk sac, while EXOs reach the embryo. Conclusions: The present data confirms the potential application of EXOs for the prenatal repair of neural tube defects and proposes MIMs as prospective vehicles to prevent congenital malformations caused by in utero exposure to drugs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。