Sterol carrier protein-2 deficiency attenuates diet-induced dyslipidemia and atherosclerosis in mice

甾醇载体蛋白-2缺乏可减轻小鼠饮食引起的血脂异常和动脉粥样硬化

阅读:8
作者:Hongliang He, Jing Wang, Paul J Yannie, Genta Kakiyama, William J Korzun, Shobha Ghosh

Abstract

Intracellular cholesterol transport proteins move cholesterol to different subcellular compartments and thereby regulate its final metabolic fate. In hepatocytes, for example, delivery of high-density lipoprotein (HDL)-associated cholesterol for bile acid synthesis or secretion into bile facilitates cholesterol elimination from the body (anti-atherogenic effect), whereas delivery for esterification and subsequent incorporation into apolipoprotein B-containing atherogenic lipoproteins (e.g. very-low-density lipoprotein (VLDL)) enhances cholesterol secretion into the systemic circulation (pro-atherogenic effect). Intracellular cholesterol transport proteins such as sterol carrier protein-2 (SCP2) should, therefore, play a role in regulating these pro- or anti-atherosclerotic processes. Here, we sought to evaluate the effects of SCP2 deficiency on the development of diet-induced atherosclerosis. We generated LDLR-/- mice deficient in SCP2/SCPx (LS) and examined the effects of this deficiency on Western diet-induced atherosclerosis. SCP2/SCPx deficiency attenuated atherosclerosis in LS mice by >80% and significantly reduced plasma cholesterol and triglyceride levels. Investigation of the likely underlying mechanisms revealed a significant reduction in intestinal cholesterol absorption (given as an oral gavage) in SCP2/SCPx-deficient mice. Consistently, siRNA-mediated knockdown of SCP2 in intestinal cells significantly reduced cholesterol uptake. Furthermore, hepatic triglyceride/VLDL secretion from the liver or hepatocytes isolated from SCP2/SCPx-deficient mice was significantly reduced. These results indicate an important regulatory role for SCP2 deficiency in attenuating diet-induced atherosclerosis by limiting intestinal cholesterol absorption and decreasing hepatic triglyceride/VLDL secretion. These findings suggest targeted inhibition of SCP2 as a potential therapeutic strategy to reduce Western diet-induced dyslipidemia and atherosclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。