Islet-Resident Memory T Cells Orchestrate the Immunopathogenesis of Type 1 Diabetes through the FABP4-CXCL10 Axis

胰岛驻留记忆 T 细胞通过 FABP4-CXCL10 轴调控 1 型糖尿病的免疫发病机制

阅读:7
作者:Xiaoping Wu, Lai Yee Cheong, Lufengzi Yuan, Leigang Jin, Zixuan Zhang, Yang Xiao, Zhiguang Zhou, Aimin Xu, Ruby Lc Hoo, Lingling Shu

Abstract

Type 1 diabetes (T1D) is a chronic disease characterized by self-destruction of insulin-producing pancreatic β cells by cytotoxic T cell activity. However, the pathogenic mechanism of T cell infiltration remains obscure. Recently, tissue-resident memory T (TRM) cells have been shown to contribute to cytotoxic T cell recruitment. TRM cells are found present in human pancreas and are suggested to modulate immune homeostasis. Here, the role of TRM cells in the development of T1D is investigated. The presence of TRM cells in pancreatic islets is observed in non-obese diabetic (NOD) mice before T1D onset. Mechanistically, elevated fatty acid-binding protein 4 (FABP4) potentiates the survival and alarming function of TRM cells by promoting fatty acid utilization and C-X-C motif chemokine 10 (CXCL10) secretion, respectively. In NOD mice, genetic deletion of FABP4 or depletion of TRM cells using CD69 neutralizing antibodies resulted in a similar reduction of pancreatic cytotoxic T cell recruitment, a delay in diabetic incidence, and a suppression of CXCL10 production. Thus, targeting FABP4 may represent a promising therapeutic strategy for T1D.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。