Development and Clinical Validation of a Seven-Gene Prognostic Signature Based on Multiple Machine Learning Algorithms in Kidney Cancer

基于多种机器学习算法的肾癌七基因预后特征的开发和临床验证

阅读:10
作者:Mi Tian, Tao Wang, Peng Wang

Abstract

About a third of patients with kidney cancer experience recurrence or cancer-related progression. Clinically, kidney cancer prognoses may be quite different, even in patients with kidney cancer at the same clinical stage. Therefore, there is an urgent need to screen for kidney cancer prognosis biomarkers. Differentially expressed genes (DEGs) were identified using kidney cancer RNA sequencing data from the Gene Expression Omnibus (GEO) database. Biomarkers were screened using random forest (RF) and support vector machine (SVM) models, and a multigene signature was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis. Univariate and multivariate Cox regression analyses were performed to explore the relationships between clinical features and prognosis. Finally, the reliability and clinical applicability of the model were validated, and relationships with biological pathways were identified. Western blots were also performed to evaluate gene expression. A total of 50 DEGs were obtained by intersecting the RF and SVM models. A seven-gene signature (RNASET2, EZH2, FXYD5, KIF18A, NAT8, CDCA7, and WNT7B) was constructed by LASSO regression. Univariate and multivariate Cox regression analyses showed that the seven-gene signature was an independent prognostic factor for kidney cancer. Finally, a predictive nomogram was established in The Cancer Genome Atlas (TCGA) cohort and validated internally. In tumor tissue, RNASET2 and FXYD5 were highly expressed and NAT8 was lowly expressed at the protein and transcription levels. This model could complement the clinicopathological characteristics of kidney cancer and promote the personalized management of patients with kidney cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。