Reversible pathologic and cognitive phenotypes in an inducible model of Alzheimer-amyloidosis

阿尔茨海默病-淀粉样变性诱导模型中的可逆病理和认知表型

阅读:2
作者:Tatiana Melnikova, Susan Fromholt, HyunSu Kim, Deidre Lee, Guilian Xu, Ashleigh Price, Brenda D Moore, Todd E Golde, Kevin M Felsenstein, Alena Savonenko, David R Borchelt

Abstract

Transgenic mice that express mutant amyloid precursor protein (APPsi) using tet-Off vector systems provide an alternative model for assessing short- and long-term effects of Aβ-targeting therapies on phenotypes related to the deposition of Alzheimer-type amyloid. Here we use such a model, termed APPsi:tTA, to determine what phenotypes persist in mice with high amyloid burden after new production of APP/Aβ has been suppressed. We find that 12- to 13-month-old APPsi:tTA mice are impaired in cognitive tasks that assess short- and long-term memories. Acutely suppressing new APPsi/Aβ production produced highly significant improvements in performing short-term spatial memory tasks, which upon continued suppression translated to superior performance in more demanding tasks that assess long-term spatial memory and working memory. Deficits in episodic-like memory and cognitive flexibility, however, were more persistent. Arresting mutant APPsi production caused a rapid decline in the brain levels of soluble APP ectodomains, full-length APP, and APP C-terminal fragments. As expected, amyloid deposits persisted after new APP/Aβ production was inhibited, whereas, unexpectedly, we detected persistent pools of solubilizable, relatively mobile, Aβ42. Additionally, we observed persistent levels of Aβ-immunoreactive entities that were of a size consistent with SDS-resistant oligomeric assemblies. Thus, in this model with significant amyloid pathology, a rapid amelioration of cognitive deficits was observed despite persistent levels of oligomeric Aβ assemblies and low, but detectable solubilizable Aβ42 peptides. These findings implicate complex relationships between accumulating Aβ and activities of APP, soluble APP ectodomains, and/or APP C-terminal fragments in mediating cognitive deficits in this model of amyloidosis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。