Hydroxysteroid dehydrogenase family proteins on lipid droplets through bacteria, C. elegans, and mammals

羟基类固醇脱氢酶家族蛋白通过细菌、秀丽隐杆线虫和哺乳动物作用于脂滴

阅读:9
作者:Yangli Liu, Shimeng Xu, Congyan Zhang, Xiaotong Zhu, Mirza Ahmed Hammad, Xuelin Zhang, Mark Christian, Hong Zhang, Pingsheng Liu

Abstract

Lipid droplets (LDs) are the main fat storing sites in almost all species from bacteria to humans. The perilipin family has been found as LD proteins in mammals, Drosophila, and a couple of slime molds, but no bacterial LD proteins containing sequence conservation were identified. In this study, we reported that the hydroxysteroid dehydrogenase (HSD) family was found on LDs across all organisms by LD proteomic analysis. Imaging experiments confirmed LD targeting of three representative HSD proteins including ro01416 in RHA1, DHS-3 in C. elegans, and 17β-HSD11 in human cells. In C. elegans, 17β-HSD11 family proteins (DHS-3, DHS-4 and DHS-19) were localized on LDs in distinct tissues. In intestinal cells of C. elegans, DHS-3 targeted to cytoplasmic LDs, while DHS-9 labeled nuclear LDs. Furthermore, the N-terminal hydrophobic domains of 17β-HSD11 family were necessary for their targeting to LDs. Last, 17β-HSD11 family proteins induced LD aggregation, and deletion of DHS-3 in C. elegans caused lipid decrease. Independent of their presumptive catalytic sites, 17β-HSD11 family proteins regulated LD dynamics and lipid metabolism through affecting the LD-associated ATGL, which was conserved between C. elegans and humans. Together, these findings for HSDs provide a new insight not only into the mechanistic studies of the dynamics and functions of LDs in multiple organisms, but also into understanding the evolutionary history of the organelle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。