Pollen products collected from honey bee hives experiencing minor stress have altered fungal communities and reduced antimicrobial properties

从受到轻微压力的蜂巢中收集的花粉产品已经改变了真菌群落并降低了抗菌性能

阅读:17
作者:Kenya E Fernandes, Elizabeth A Frost, Madlen Kratz, Dee A Carter

Abstract

Fungi are increasingly recognized to play diverse roles within honey bee hives, acting as pathogens, mutualists, and commensals. Pollen products, essential for hive nutrition, host significant fungal communities with potential protective and nutritional benefits. In this study, we profile the fungal communities and antifungal properties of three pollen products from healthy and stressed hives: fresh pollen collected by forager bees from local plants; stored pollen packed into the comb inside the hive; and bee bread, which is stored pollen following anaerobic fermentation used for bee and larval nutrition. Using amplicon sequencing, we found significant differences in fungal community composition, with hive health and sample type accounting for 8.8% and 19.3% of variation in beta diversity, respectively. Pollen and bee bread extracts had species-specific antimicrobial activity and inhibited the fungal hive pathogens Ascosphaera apis, Aspergillus flavus, and Aspergillus fumigatus, and the bacterial hive pathogen Paenibacillus larvae. Activity was positively correlated with phenolic and antioxidant content and was diminished in stressed hives. The plant source of pollen determined by amplicon sequencing differed in stressed hives, suggesting altered foraging behaviour. These findings illustrate the complex interplay between honey bees, fungal communities, and hive products, which should be considered in hive management and conservation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。