Capsaicin inhibits aortic valvular interstitial cell calcification via the redox-sensitive NFκB/AKT/ERK1/2 pathway

辣椒素通过氧化还原敏感的 NFκB/AKT/ERK1/2 通路抑制主动脉瓣间质细胞钙化

阅读:4
作者:Radhika Adhikari, Jaehun Jung, Saugat Shiwakoti, Eun-Young Park, Hyun-Jung Kim, Ju-Young Ko, Jaeyoon You, Minho Lee, Min-Ho Oak

Abstract

Calcific aortic valve stenosis (CAVS), the third most prevalent cardiovascular disorder is known to impose a huge social and economic burden on patients. However, no pharmacotherapy has yet been established. Aortic valve replacement is the only treatment option, although its lifelong efficacy is not guaranteed and involves inevitable complications. So, there is a crucial need to find novel pharmacological targets to delay or prevent CAVS progression. Capsaicin is well known for its anti-inflammatory and antioxidant properties and has recently been revealed to inhibit arterial calcification. We thus investigated the effect of capsaicin in attenuating aortic valve interstitial cells (VICs) calcification induced by pro-calcifying medium (PCM). Capsaicin reduced the level of calcium deposition in calcified VICs, along with reductions in gene and protein expression of the calcification markers Runx2, osteopontin, and BMP2. Based on Gene Ontology biological process and Kyoto Encyclopedia of Genes and Genomes pathway analysis oxidative stress, AKT and AGE-RAGE signaling pathways were selected. The AGE-RAGE signaling pathway activates oxidative stress and inflammation-mediated pathways including ERK and NFκB signaling pathways. Capsaicin successfully inhibited oxidative stress- and reactive oxygen species-related markers NOX2 and p22phox. The markers of the AKT, ERK1/2, and NFκB signaling pathways, namely, phosphorylated AKT, ERK1/2, NFκB, and IκBα were upregulated in calcified cells, while being significantly downregulated upon capsaicin treatment. Capsaicin attenuates VICs calcification in vitro by inhibition of redox-sensitive NFκB/AKT/ERK1/2 signaling pathway, indicating its potential as a candidate to alleviate CAVS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。