Ceria Nanoparticles Synthesized With Aminocaproic Acid for the Treatment of Subarachnoid Hemorrhage

氨基己酸合成二氧化铈纳米粒子用于治疗蛛网膜下腔出血

阅读:8
作者:Han-Gil Jeong, Bong Geun Cha, Dong-Wan Kang, Do Yeon Kim, Seul Ki Ki, Song I Kim, Ju Hee Han, Wookjin Yang, Chi Kyung Kim, Jaeyun Kim, Seung-Hoon Lee

Abstract

Background and Purpose- Despite early aneurysm repair and aggressive management for complications, subarachnoid hemorrhage (SAH) results in at least 25% mortality rate and 50% persistent neurological deficit. We investigated whether ceria nanoparticles which have potent antioxidative activities can protect against subarachnoid hemorrhage via attenuating fatal brain injuries. Methods- Uniform, 3 nm, water-dispersed ceria nanoparticles were prepared from short sol-gel reaction of cerium (III) ions with aminocaproic acid in aqueous phase. SAH was induced by endovascular perforation of middle cerebral artery of rats. A single dose of ceria nanoparticles (0.5 mg Ce/kg) or saline control was randomly administered intravenously at an hour post-SAH. Neuronal death, macrophage infiltration, SAH grade, and brain edema were evaluated at 72 hours. Mortality and neurological function were assessed for 14 days. Results- The obtained ceria nanoparticles with high Ce3+ to Ce4+ ratio demonstrated potent antioxidative, cytoprotective, and anti-inflammatory activities in vitro. In rodent SAH models, the severity of hemorrhage was comparable between the ceria nanoparticles- and saline-treated groups. However, ceria nanoparticles significantly reduced neuronal death, macrophage infiltration, and brain edema after SAH. Ceria nanoparticles successfully improved survival rates (88.2% in the ceria nanoparticles group versus 21.1% in the control group; P<0.001) and neurological outcomes (modified Garcia score: 12.1±0.5 in the ceria nanoparticles group versus 4.4±0.5 in the control group; P<0.001) of the animals with SAH. Conclusions- Ceria nanoparticles, totally synthesized in aqueous phase using aminocaproic acid, demonstrated promising results against SAH via potent antioxidative, neuroprotective and anti-inflammatory activities. Given the obvious limitations of current therapies for SAH, ceria nanoparticles can be a potential therapeutic agent which might result in a paradigm shift in SAH treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。