Crosstalk between AhR and wnt/β-catenin signal pathways in the cardiac developmental toxicity of PM2.5 in zebrafish embryos

AhR 与 wnt/β-catenin 信号通路之间的相互作用在 PM2.5 对斑马鱼胚胎心脏发育毒性中的作用

阅读:10
作者:Hang Zhang, Yugang Yao, Yang Chen, Cong Yue, Jiahong Chen, Jian Tong, Yan Jiang, Tao Chen

Abstract

Recent studies have shown an association between congenital heart defects and air fine particle matter (PM2.5), but the molecular mechanisms remain elusive. It is well known that a number of organic compounds in PM2.5 can act as AhR agonists, and activation of AhR can antagonize Wnt/β-catenin signaling. Therefore, we hypothesized that PM2.5 could activate AhR and then repress the expression of wnt/β-catenin targeted genes essential for cardiogenesis, resulting in heart defects. To test this hypothesis, we investigated the effects of extractable organic matter (EOM) from PM2.5 on AhR and Wnt/β-catenin signal pathways in zebrafish embryos. We confirmed that EOM could cause malformations in the heart and decreased heart rate in zebrafish embryos at 72hpf, and found that the EOM-induced heart defects were rescued in embryos co-exposed with EOM plus AhR antagonist CH223191 or β-catenin agonist CHIR99021. We further found that EOM had increased the expression levels of AhR targeted genes (Cyp1a1, Cyp1b1 and Ahrra) and reduced the mRNA levels of β-catenin targeted genes (axin2, nkx2.5 and sox9b). The mRNA expression level of Rspo2, a β-catenin upstream gene, was also decreased in embryos exposed to EOM. Supplementation with CH223191 or CHIR99021 attenuated most of the EOM-induced expression changes of genes involved in both AhR and wnt/β-catenin signal pathways. However, the mRNA expression level of AhR inhibitor Ahrrb, which did not change by EOM treatment alone, was increased in embryos co-exposed to EOM plus CH223191 or CHIR99021. We conclude that the activation of AhR by EOM from PM2.5 might repress wnt/β-catenin signaling, leading to heart defects in zebrafish embryos. Furthermore, our results indicate that the cardiac developmental toxicity of PM2.5 might be prevented by targeting AhR or wnt/β-catenin signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。