OCIAD1 contributes to neurodegeneration in Alzheimer's disease by inducing mitochondria dysfunction, neuronal vulnerability and synaptic damages

OCIAD1 通过诱导线粒体功能障碍、神经元脆弱性和突触损伤导致阿尔茨海默病的神经退行性

阅读:5
作者:Xuping Li, Lin Wang, Matthew Cykowski, Tiancheng He, Timothy Liu, Joshua Chakranarayan, Andreana Rivera, Hong Zhao, Suzanne Powell, Weiming Xia, Stephen T C Wong

Background

Hyperamyloidosis in the brain is known as the earliest neuropathological change and a unique etiological factor in Alzheimer's disease (AD), while progressive neurodegeneration in certain vulnerable brain regions forms the basis of clinical syndromes. It is not clear how early hyperamyloidosis is implicated in progressive neurodegeneration and what factors contribute to the selective brain vulnerability in AD.

Methods

Bioinformatics and experimental neurobiology methods were integrated to identify novel factors involved in the hyperamyloidosis-induced brain vulnerability in AD. We first examined neurodegeneration-specific gene signatures from sporadic AD patients and synaptic protein changes in young transgenic AD mice. Then, we systematically assessed the association of a top candidate gene with AD and investigated its mechanistic role in neurodegeneration. Findings: We identified the ovary-orientated protein OCIAD1 (Ovarian-Carcinoma-Immunoreactive-Antigen-Domain-Containing-1) as a neurodegeneration-associated factor for AD. Higher levels of OCIAD1, found in vulnerable brain areas and dystrophic neurites, were correlated with disease severity. Multiple early AD pathological events, particularly Aβ/GSK-3β signaling, elevate OCIAD1, which in turn interacts with BCL-2 to impair mitochondrial function and facilitates mitochondria-associated neuronal injury. Notably, elevated OCIAD1 by Aβ increases cell susceptibility to other AD pathological challenges. Interpretation: Our findings suggest that OCIAD1 contributes to neurodegeneration in AD by impairing mitochondria function, and subsequently leading to neuronal vulnerability, and synaptic damages. Funding: Ting Tsung & Wei Fong Chao Foundation, John S Dunn Research Foundation, Cure Alzheimer's Fund, and NIH R01AG057635 to STCW.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。