Porphyromonas gingivalis fimbriae dampen P2X7-dependent interleukin-1β secretion

牙龈卟啉单胞菌菌毛抑制 P2X7 依赖性白细胞介素-1β 的分泌

阅读:8
作者:Ana Carolina Morandini, Erivan S Ramos-Junior, Jan Potempa, Ky-Anh Nguyen, Ana Carolina Oliveira, Maria Bellio, David M Ojcius, Julio Scharfstein, Robson Coutinho-Silva

Abstract

Porphyromonas gingivalis is a major contributor to the pathogenesis of periodontitis, an infection-driven inflammatory disease that leads to bone destruction. This pathogen stimulates pro-interleukin (IL)-1β synthesis but not mature IL-1β secretion, unless the P2X7 receptor is activated by extracellular ATP (eATP). Here, we investigated the role of P. gingivalis fimbriae in eATP-induced IL-1β release. Bone marrow-derived macrophages (BMDMs) from wild-type (WT) or P2X7-deficient mice were infected with P. gingivalis (381) or isogenic fimbria-deficient (DPG3) strain with or without subsequent eATP stimulation. DPG3 induced higher IL-1β secretion after eATP stimulation compared to 381 in WT BMDMs, but not in P2X7-deficient cells. This mechanism was dependent on K(+) efflux and Ca(2+)-independent phospholipase A2 activity. Accordingly, non-fimbriated P. gingivalis failed to inhibit apoptosis via the eATP/P2X7 pathway. Furthermore, P. gingivalis-driven stimulation of IL-1β was Toll-like receptor 2 and MyD88 dependent, and not associated with fimbria expression. Fimbria-dependent down-modulation of IL-1β was selective, as levels of other cytokines remained unaffected by P2X7 deficiency. Confocal microscopy demonstrated the presence of discrete P2X7 expression in the absence of P. gingivalis stimulation, which was enhanced by 381-stimulated cells. Notably, DPG3-infected macrophages revealed a distinct pattern of P2X7 receptor expression with a marked focus formation. Collectively, these data demonstrate that eATP-induced IL-1β secretion is impaired by P. gingivalis fimbriae in a P2X7-dependent manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。