Gut commensal derived-valeric acid protects against radiation injuries

肠道共生菌衍生的戊酸可防止辐射损伤

阅读:7
作者:Yuan Li, Jiali Dong, Huiwen Xiao, Shuqin Zhang, Bin Wang, Ming Cui, Saijun Fan

Background

Hematopoietic and intestinal systems side effects are frequently found in patients who suffered from accidental or medical radiation exposure. In this case, we investigated the effects of gut microbiota produced-valeric acid (VA) on radiation-induced injuries.

Conclusions

Our findings provide new insights into gut microbiota-produced VA and underpin that VA might be employed as a therapeutic option to mitigate radiation injury in pre-clinical settings.

Methods

Mice were exposed to total body irradiation (TBI) or total abdominal irradiation (TAI) to mimic accidental or clinical scenarios. High-performance liquid chromatography (HPLC) was performed to assess short-chain fatty acids (SCFAs) in fecal pellets. Oral gavage with VA was used to mitigate radiation-induced toxicity. Gross examination was performed to assess tissue injuries of thymus, spleen and small intestine. High-throughput sequencing was used to characterize the gut microbiota profile. Isobaric tags for relative and absolute quantitation (iTRAQ) were performed to analyze the difference of protein profile. Hydrodynamic-based gene delivery assay was performed to silence KRT1 in vivo.

Results

VA exerted the most significant radioprotection among the SCFAs. In detail, VA replenishment elevated the survival rate of irradiated mice, protected hematogenic organs, improved gastrointestinal (GI) tract function and intestinal epithelial integrity in irradiated mice. High-throughput sequencing and iTRAQ showed that oral gavage of VA restored the enteric bacteria taxonomic proportions, reprogrammed the small intestinal protein profile of mice following TAI exposure. Importantly, keratin 1 (KRT1) played a pivotal role in the radioprotection of VA. Conclusions: Our findings provide new insights into gut microbiota-produced VA and underpin that VA might be employed as a therapeutic option to mitigate radiation injury in pre-clinical settings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。