The Medial Septum Is Insulin Resistant in the AD Presymptomatic Phase: Rescue by Nerve Growth Factor-Driven IRS1 Activation

内侧隔在 AD 症状前期具有胰岛素抵抗性:通过神经生长因子驱动的 IRS1 激活进行拯救

阅读:6
作者:Valentina Sposato, Nadia Canu, Elena Fico, Salvatore Fusco, Giulia Bolasco, Maria Teresa Ciotti, Matteo Spinelli, Delio Mercanti, Claudio Grassi, Viviana Triaca, Pietro Calissano

Abstract

Basal forebrain cholinergic neurons (BFCN) are key modulators of learning and memory and are high energy-demanding neurons. Impaired neuronal metabolism and reduced insulin signaling, known as insulin resistance, has been reported in the early phase of Alzheimer's disease (AD), which has been suggested to be "Type 3 Diabetes." We hypothesized that BFCN may develop insulin resistance and their consequent failure represents one of the earliest event in AD. We found that a condition reminiscent of insulin resistance occurs in the medial septum of 3 months old 3×Tg-AD mice, reported to develop typical AD histopathology and cognitive deficits in adulthood. Further, we obtained insulin resistant BFCN by culturing them with high insulin concentrations. By means of these paradigms, we observed that nerve growth factor (NGF) reduces insulin resistance in vitro and in vivo. NGF activates the insulin receptor substrate 1 (IRS1) and rescues c-Fos expression and glucose metabolism. This effect involves binding of activated IRS1 to the NGF receptor TrkA, and is lost in presence of the specific IRS inhibitor NT157. Overall, our findings indicate that, in a well-established animal model of AD, the medial septum develops insulin resistance several months before it is detectable in the neocortex and hippocampus. Remarkably, NGF counteracts molecular alterations downstream of insulin-resistant receptor and its nasal administration restores insulin signaling in 3×Tg-AD mice by TrkA/IRS1 activation. The cross-talk between NGF and insulin pathways downstream the insulin receptor suggests novel potential therapeutic targets to slow cognitive decline in AD and diabetes-related brain insulin resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。