Oral squamous cell carcinoma-derived EVs promote tumor progression by regulating inflammatory cytokines and the IL-17A-induced signaling pathway

口腔鳞状细胞癌衍生的 EV 通过调节炎症细胞因子和 IL-17A 诱导的信号通路促进肿瘤进展

阅读:5
作者:Ruowei Li, Yifan Zhou, Miaomiao Zhang, Ruiqi Xie, Ning Duan, Hong Liu, Yao Qin, Jingjing Ma, Zhiyuan Li, Pei Ye, Wenmei Wang, Xiang Wang

Background

Inflammatory cytokines in the tumor microenvironment (TME) contribute to tumor growth, proliferation, and invasion, and tumor-derived extracellular vesicles (EVs) act as critical "messengers" of communication in the tumor microenvironment. The effects of EVs derived from oral squamous cell carcinoma (OSCC) cells on tumor progression and the inflammatory microenvironment are still unclear. Our study aims to investigate the role of OSCC-derived EVs in tumor progression, the imbalanced TME, and immunosuppression and their effect on the IL-17A-induced signaling pathway.

Conclusion

Our results indicated that OSCC-derived EVs can promote tumor progression by altering the TME, causing an inflammatory cytokine imbalance, inducing immunosuppression, and contributing to overactivation of the IL-17A-induced signaling pathway. Our study might provide novel insights into the role of OSCC-derived EVs in tumor biological behavior and immune dysregulation.

Methods

EVs were isolated from the supernatant of a mouse OSCC cell line, SCC7. The effects of SCC7-EVs and the EV release-specific inhibitor GW4869 on the proliferation and migration of SCC7 cells were investigated in vitro by using CCK-8 and scratch wound healing assays. RT-qPCR and ELISA were performed to examine the alterations in cytokine levels. Then, a mouse xenograft model of OSCC was established by submucosal injection of SCC7 cells with or without SCC7-EV and GW4869 treatment. The effects of GW4869 and SCC7-EVs on xenograft tumor proliferation and invasion were investigated by tumor volume determination and histopathological examination. ELISA was used to investigate the changes in serum cytokine levels. Immunohistochemistry was adopted to analyze the alterations in the levels of inflammatory cytokines, immune factors, and crucial molecules in the IL-17A signaling pathway.

Results

SCC7-derived EVs increased the supernatant and serum levels of IL-17A, IL-10, IL-1β, and PD-L1, while GW4869 decreased those of TNF-α and IFN-γ. SCC7-EV treatment significantly increased xenograft tumor growth and invasion in mice but resulted in little liquefactive necrosis in tumors. However, GW4869 treatment significantly inhibited xenograft tumor growth but resulted in more liquefactive necrosis. SCC7-derived EVs decreased the expression level of PTPN2, suppressing the immune responses of CD8 + T cells in vivo. Moreover, SCC7-EV treatment significantly enhanced the tumor expression levels of crucial molecules in the IL-17A pathway, including IL-17A, TRAF6 and c-FOS, whereas GW4869 treatment significantly reduced those levels in tumor tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。