CARMA3 Deficiency Aggravates Angiotensin II-Induced Abdominal Aortic Aneurysm Development Interacting Between Endoplasmic Reticulum and Mitochondria

CARMA3 缺乏会加剧血管紧张素 II 诱发的腹主动脉瘤发展,并与内质网和线粒体相互作用

阅读:7
作者:Yiwei Yao, Yide Cao, Yueyue Xu, Ganyi Chen, Yafeng Liu, Hongwei Jiang, Rui Fan, Wei Qin, Xiaodi Wang, Hao Chai, Xin Chen, Zhibing Qiu, Wen Chen

Background

Abdominal aortic aneurysm (AAA) is life threatening and associated with vascular walls' chronic inflammation. However, a detailed understanding of the underlying mechanisms is yet to be elucidated. CARMA3 assembles the CARMA3-BCL10-MALT1 (CBM) complex in inflammatory diseases and is proven to mediate angiotensin II (Ang II) response to inflammatory signals by modulating DNA damage-induced cell pyroptosis. In addition, interaction between endoplasmic reticulum (ER) stress and mitochondrial damage is one of the main causes of cell pyroptosis.

Conclusions

CARMA3 appears to play a key role in AAA formation and might be a potential target for therapeutic interventions of AAA.

Methods

Male wild type (WT) or CARMA3-/- mice aged 8 to 10 weeks were subcutaneously implanted with osmotic minipumps, delivering saline or Ang II at the rate of 1 μg/kg/min for 1, 2, and 4 weeks.

Results

We discovered that CARMA3 knockout promoted formation of AAA and prominently increased diameter and severity of the mice abdominal aorta infused with Ang II. Moreover, a significant increase in the excretion of inflammatory cytokines, expression levels of matrix metalloproteinases (MMPs) and cell death was found in the aneurysmal aortic wall of CARMA3-/- mice infused with Ang II compared with WT mice. Further studies found that the degree of ER stress and mitochondrial damage in the abdominal aorta of CARMA3-/- mice was more severe than that in WT mice. Mechanistically, CARMA3 deficiency exacerbates the interaction between ER stress and mitochondrial damage by activating the p38MAPK pathway, ultimately contributing to the pyroptosis of vascular smooth muscle cells (VSMCs). Conclusions: CARMA3 appears to play a key role in AAA formation and might be a potential target for therapeutic interventions of AAA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。