Quantitative proteomics analysis in small cell carcinoma of cervix reveals novel therapeutic targets

宫颈小细胞癌的定量蛋白质组学分析揭示新的治疗靶点

阅读:7
作者:Haifeng Qiu #, Ning Su #, Jing Wang, Shuping Yan, Jing Li

Background

As a rare pathologic subtype, small cell carcinoma of the cervix (SCCC) is characterized by extensive aggressiveness and resistance to current therapies. To date, our knowledge of SCCC origin and progression is limited and sometimes even controversial. Herein, we explored the whole-protein expression profiles in a panel of SCCC cases, aiming to provide more evidence for the precise diagnosis and targeting therapy.

Conclusions

Using quantitative proteomics analysis, we first reported the whole-protein expression profiles in SCCC. Significant alterations were found in proteins associated with the enhancement of DNA replication and cellular motility. Besides the association with mitosis, a unique metabolic feature was detected in cases with tumor recurrence. These findings provided novel targets for disease surveillance and treatments, which warranted further validation in the future.

Methods

Eighteen SCCC samples and six matched normal cervix tissues were collected from January 2013 to December 2017. Data independent acquisition mass spectrometry (DIA) was performed to discriminate the different proteins (DEPs) associated with SCCC. The expression of CDN2A and SYP in corresponding SCCC tissues was verified using immunohistochemistry. GO and KEGG enrichment analyses were used to identify the key DEPs related to SCCC development and tumor recurrence.

Results

As a result, 1311 DEPs were identified in SCCC tissues (780 up-regulated and 531 down-regulated). In up-regulated DEPs, both GO analysis and KEGG analysis showed the most enriched were related to DNA replication (including nuclear DNA replication, DNA-dependent DNA replication, and cell cycle DNA replication), indicating the prosperous proliferation in SCCC. As for the down-regulated DEPs, GO analysis showed that the most enriched functions were associated with extracellular matrix collagen-containing extracellular matrix. KEGG analysis revealed that the DEPs were enriched in Complement and coagulation cascades, proteoglycans in cancer, and focal adhesion-related pathways. Down-regulation of these proteins could enhance the mobility of cancer cells and establish a favorable microenvironment for tumor metastasis, which might be accounted for the frequent local and distant metastasis in SCCC. Surprisingly, the blood vessels and circulatory system exhibit a down-regulation in SCCC, which might be partly responsible for its resistance to anti-angiogenic regimens. In the stratification analysis of early-stage tumors, a group of enzymes involved in the cancer metabolism was discriminated in these recurrence cases. Conclusions: Using quantitative proteomics analysis, we first reported the whole-protein expression profiles in SCCC. Significant alterations were found in proteins associated with the enhancement of DNA replication and cellular motility. Besides the association with mitosis, a unique metabolic feature was detected in cases with tumor recurrence. These findings provided novel targets for disease surveillance and treatments, which warranted further validation in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。