Staggered circular nanoporous graphene converts electromagnetic waves into electricity

交错圆形纳米多孔石墨烯将电磁波转化为电能

阅读:5
作者:Hualiang Lv, Yuxing Yao, Shucong Li, Guanglei Wu, Biao Zhao, Xiaodi Zhou, Robert L Dupont, Ufuoma I Kara, Yimin Zhou, Shibo Xi, Bo Liu, Renchao Che, Jincang Zhang, Hongbin Xu, Solomon Adera, Renbing Wu, Xiaoguang Wang

Abstract

Harvesting largely ignored and wasted electromagnetic (EM) energy released by electronic devices and converting it into direct current (DC) electricity is an attractive strategy not only to reduce EM pollution but also address the ever-increasing energy crisis. Here we report the synthesis of nanoparticle-templated graphene with monodisperse and staggered circular nanopores enabling an EM-heat-DC conversion pathway. We experimentally and theoretically demonstrate that this staggered nanoporous structure alters graphene's electronic and phononic properties by synergistically manipulating its intralayer nanostructures and interlayer interactions. The staggered circular nanoporous graphene exhibits an anomalous combination of properties, which lead to an efficient absorption and conversion of EM waves into heat and in turn an output of DC electricity through the thermoelectric effect. Overall, our results advance the fundamental understanding of the structure-property relationships of ordered nanoporous graphene, providing an effective strategy to reduce EM pollution and generate electric energy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。