Parental obesity alters offspring blood pressure regulation and cardiovascular responses to stress: role of P2X7R and sex differences

父母肥胖改变后代血压调节和心血管对压力的反应:P2X7R 的作用和性别差异

阅读:3
作者:Alexandre A da Silva, Sydney P Moak, Xuemei Dai, Gisele C Borges, Ana C M Omoto, Zhen Wang, Xuan Li, Alan J Mouton, John E Hall, Jussara M do Carmo

Abstract

We examined the impact of parental obesity on offspring blood pressure (BP) regulation and cardiovascular responses to stress. Offspring from normal (N) diet-fed C57BL/6J parents were fed either N (NN) or a high-fat (H) diet (NH) from weaning until adulthood. Offspring from obese H diet-fed parents were also fed N (HN) or H diet (HH). Body weight, calorie intake, and fat mass were measured at 22 wk of age when cardiovascular phenotyping was performed. Male and female HH offspring were 15% heavier than NH and 70% heavier than NN offspring. Male HH and HN offspring had elevated BP (121 ± 2 and 115 ± 1 mmHg, by telemetry) compared with male NH and NN offspring (108 ± 6 and 107 ± 3 mmHg, respectively) and augmented BP responses to angiotensin II, losartan, and hexamethonium. Male HH and HN offspring also showed increased BP responses to air-jet stress (37 ± 2 and 38 ± 2 mmHg) compared with only 24 ± 3 and 25 ± 3 mmHg in NH and NN offspring. Baseline heart rate (HR) and HR responses to air-jet stress were similar among groups. In females, BP and cardiovascular responses to stress were similar among all offspring. Male H diet-fed offspring from obese H diet-fed purinoreceptor 7-deficient (HH-P2X7R-KO) parents had normal BP that was similar to control NN-P2X7R-KO offspring from lean parents. These results indicate that parental obesity leads to increased BP and augmented BP responses to stress in their offspring in a sex-dependent manner, and the impact of parental obesity on male offspring BP regulation is markedly attenuated in P2X7R-KO mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。