Role and regulation of PDGFRα signaling in liver development and regeneration

PDGFRα信号在肝脏发育和再生中的作用和调控

阅读:5
作者:Prince K Awuah, Kari N Nejak-Bowen, Satdarshan P S Monga

Abstract

Aberrant platelet-derived growth factor receptor-α (PDGFRα) signaling is evident in a subset of hepatocellular cancers (HCCs). However, its role and regulation in hepatic physiology remains elusive. In the current study, we examined PDGFRα signaling in liver development and regeneration. We identified notable PDGFRα activation in hepatic morphogenesis that, when interrupted by PDGFRα-blocking antibody, led to decreased hepatoblast proliferation and survival in embryonic liver cultures. We also identified temporal PDGFRα overexpression, which is regulated by epidermal growth factor (EGF) and tumor necrosis factor α, and its activation at 3 to 24 hours after partial hepatectomy. Through generation of hepatocyte-specific PDGFRA knockout (KO) mice that lack an overt phenotype, we show that absent PDGFRα compromises extracelluar signal-regulated kinases and AKT activation 3 hours after partial hepatectomy, which, however, is alleviated by temporal compensatory increases in the EGF receptor (EGFR) and the hepatocyte growth factor receptor (Met) expression and activation along with rebound activation of extracellular signal-regulated kinases and AKT at 24 hours. These untimely increases in EGFR and Met allow for normal hepatocyte proliferation at 48 hours in KO, which, however, are aberrantly prolonged up to 72 hours. Intriguingly, such compensation also was visible in primary KO hepatocyte cultures but not in HCC cells after siRNA-mediated PDGFRα knockdown. Thus, temporal activation of PDGFRα in liver development is important in hepatic morphogenesis. In liver regeneration, despite increased signaling, PDGFRα is dispensable owing to EGFR and Met compensation, which is unique to normal hepatocytes but not HCC cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。