A highly sensitive signal-on biosensor based on restriction enzyme-mediated molecular switch for detection of TET1

基于限制性酶介导分子开关的高灵敏度信号生物传感器,用于检测 TET1

阅读:5
作者:Ying Cheng, Chen Chen, Fang Wang, Zilin Chen

Abstract

Ten-eleven translocation 1 (TET1) is a member of the TET enzyme family of dioxygenases, which plays an important role in active DNA demethylation. Therefore, the sensitive TET1 detection could help us better understand DNA methylation-demethylation in epigenetics. Here we report a detection method that consists of electrode fabrication, TET1 modification, DNA digestion, signal-on oxidoreduction, and current peak monitoring. An exquisitely designed 5'end-G-rich oligodeoxynucleotide was synthesized bearing a methylated cytosine (5-mC), which formed into hairpin dsDNA with the MspI recognition sequence (CmCGG/GGCC). Then hairpin dsDNA was fabricated onto gold nanoparticles modified glassy carbon electrode (DNA/AuNPs/GCE) via Au-S bond. The combination uses of restriction enzyme MspI and hemin converted fabricated-dsDNA into peroxidase-mimicking DNAzyme, thereby promoting the reduction of H2O2 with a current peak. However, the current peak was extremely decreased once TET1 and T4 β-GT were used in advance. We confirmed a delicately linear relationship matching between the current difference and TET1 activity from 0.7 to 10.5 ng μL-1 with a detection limit of 0.027 ng μL-1, which outcompeted the former methods at least one order of magnitudes. The TET1 activity evaluation in the existence of Bobcat339 was also tested as the proof of concept of inhibitors screening. Our strategy provides a novel, label-free, and sensitive electrochemical approach that enables us to complete both TET1 activity evaluation and potential TET1 inhibitors screening.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。