Background
Oral squamous cell carcinoma (OSCC) is a public health problem worldwide. MicroRNAs, acting as either oncogenes or tumor suppressors, have gathered much attention. The
Conclusion
miR-149-5p regulates cisplatin chemosensitivity, cell growth, apoptosis and metastasis by targeting TGFβ2. miR-149-5p/TGFβ2 axis has potential for therapy of OSCC.
Methods
The expressions of miR-149-5p and TGFβ2 were measured by quantitative real-time polymerase chain reaction. The survival rate of cells treated with different concentrations of CDDP was checked by CCK-8. The cell proliferation and apoptosis was determined by CCK-8 and flow cytometry, respectively. Cell migration and invasion were examined using transwell assay. The interaction of miR-149-5p and TGFβ2 was predicted by online software Targetscan and confirmed by luciferase reporter assay. The protein expression of TGFβ2, p-SMAD2 and p-SMAD3 was quantified using western blot.
Results
The expression of miR-149-5p was obviously decreased in OSCC tissues and cell lines, and its expression was lower in a cisplatin resistant cell line (CAL-27/CDDP) than that of a normal OSCC cell line (CAL-27). CCK-8 assay suggested that miR-149-5p increased drug sensitivity in CAL-27 and CAL-27/CDDP cells. miR-149-5p attenuated proliferation, migration and invasion, and promoted apoptosis of CAL-27 and CAL-27/CDDP cells. In addition, TGFβ2 was up-regulated in OSCC cells at both mRNA and protein levels. Moreover, miR-149-5p promoted cisplatin chemosensitivity and regulated cell proliferation, apoptosis, migration and invasion by targeting TGFβ2 in CAL-27 and CAL-27/CDDP cells.
