Nelfinavir suppresses insulin signaling and nitric oxide production by human aortic endothelial cells: protective effects of thiazolidinediones

奈非那韦抑制人主动脉内皮细胞的胰岛素信号和一氧化氮生成:噻唑烷二酮的保护作用

阅读:8
作者:Debasis Mondal, Kai Liu, Milton Hamblin, Joseph A Lasky, Krishna C Agrawal

Background

In human immunodeficiency virus 1 (HIV-1)-infected individuals, exposure to a protease inhibitor (PI)-based highly active antiretroviral therapy (HAART) regimen increases cardiovascular disease and endothelial dysfunction. However, the mechanisms of PI-induced effects on endothelial cells (ECs) are not known. Furthermore, strategies to suppress these deleterious outcomes of PIs need to be developed. Insulin-induced PI3K/Akt signaling and endothelial nitric oxide (NO)-synthase (eNOS) phosphorylation regulates NO production by ECs that maintain vascular homeostasis. We evaluated whether nelfinavir (NEL), a potent HIV-1 PI that suppresses Akt phosphorylation, can alter insulin-induced NO production in human aortic endothelial cells (HAECs) and whether insulin sensitization of HAECs via the peroxisome proliferator-activated receptor-gamma agonists, thiazolidinediones, can ameliorate these side effects.

Conclusion

Our findings indicate that treatment with potent insulin sensitizers may protect against PI-mediated endothelial dysfunction during long-term HAART.

Methods

Real-time NO production in HAECs was monitored by fluorimetric dyes DAF-FM DA and DAF-2 DA. Immunodetection studies were used to determine the phosphorylation of Akt, eNOS, insulin receptor-β (IR-β), insulin receptor substrate-1 (IRS-1), and PI3K/p85α. Expression of eNOS messenger RNA was measured by reverse transcription polymerase chain reaction.

Results

In vitro exposure (72 hours) of HAECs to NEL (0.25-2 μg/mL) decreased both basal (2.5-fold) and insulin-induced NO production (4- to 5-fold). NEL suppressed insulin-induced phosphorylation of both Akt and eNOS at serine residues 473 and 1177, respectively. NEL decreased tyrosine phosphorylation of IR-β, IRS-1, and PI3K. Coexposure to troglitazone (TRO; 250 nM) ameliorated the suppressive effects of NEL on insulin signaling and NO production. Coexposure to TRO also increased eNOS expression in NEL-treated HAECs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。