Salinomycin triggers prostate cancer cell apoptosis by inducing oxidative and endoplasmic reticulum stress via suppressing Nrf2 signaling

盐霉素通过抑制 Nrf2 信号传导诱导氧化和内质网应激,引发前列腺癌细胞凋亡

阅读:6
作者:Jianyong Yu, Yang Yang, Shan Li, Peng Meng

Abstract

Salinomycin is a polyether antiprotozoal antibiotic that is widely used as an animal food additive. Some antifungal, antiparasitic, antiviral and anti-inflammatory activities have been reported for salinomycin. Recently, the anti-cancer effect of salinomycin has been demonstrated in breast cancer; however, the underlying mechanism remains unknown. The present study aimed to investigate the functional roles of salinomycin in the progression of prostate cancer cells using the DU145 and PC-3 cell lines. Western blotting and reverse transcription-quantitative polymerase chain reaction were performed to detect the expression of oxidative stress and endoplasmic reticulum stress-related molecules, and flow cytometry was performed to detect the apoptosis rate of DU145 and PC-3 cells after salinomycin treatment. The results demonstrated that salinomycin inhibited the viability and induced the apoptosis of PC-3 and DU145 cells in a dose-dependent manner. Furthermore, salinomycin increased the production of reactive oxygen species (ROS) and 8-hydroxy-2'-deoxyguanosine (8-OH-dG) and the lipid peroxidation. In addition, salinomycin induced the activation of unfolded protein response and endoplasmic reticulum stress in DU145 and PC-3 cells, as indicated by the elevated expression of binding immunoglobulin protein, activating transcription factor 4, phosphorylated eukaryotic initiation factor 2α, phosphorylated protein kinase RNA-like endoplasmic reticulum kinase and C/EBP homologous protein. In addition, salinomycin significantly downregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1, NAD(P)H quinone dehydrogenase 1 and glutamate-cysteine ligase catalytic subunit and decreased the activity of the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase in PC-3 and DU145 cells. Furthermore, the Nrf2 activator, tert-butylhydroquinone, significantly reversed the therapeutic effects of salinomycin by stimulating the Nrf2 pathway and increasing the activity of antioxidant enzymes. Taken together, these findings demonstrated that salinomycin may trigger apoptosis by inducing oxidative and ER stress in prostate cancer cells via suppressing Nrf2 signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。