Chronic Lead Exposure in Adult Mice: Associations with miR-671/CDR1as Regulation, NF-κB Signaling, and Alzheimer's Disease-like Pathology

成年小鼠慢性铅暴露:与 miR-671/CDR1as 调控、NF-κB 信号传导和阿尔茨海默病样病理的关系

阅读:6
作者:Mengyun Qiao, Haitao Yang, Li Liu, Tao Yu, Haihua Wang, Xiao Chen, Yi Zhang, Airu Duan, Shujun Lyu, Siyu Wu, Jingwei Xiao, Bin Li

Abstract

Long-term exposure to lead (Pb) can result in chronic damage to the body through accumulation in the central nervous system (CNS) leading to neurodegenerative diseases, such as Alzheimer's disease (AD). This study delves into the intricate role of miR-671/CDR1as regulation in the etiology of AD-like lesions triggered by chronic Pb exposure in adult mice. To emulate the chronic effects of Pb, we established a rodent model spanning 10 months of controlled Pb administration, dividing 52 C57BL/6J mice into groups receiving varying concentrations of Pb (1, 2, or 4 g/L) alongside an unexposed control. Blood Pb levels were monitored using serum samples to ensure accurate dosing and to correlate with observed toxicological outcomes. Utilizing the Morris water maze, a robust behavioral assay for assessing cognitive functions, we documented a dose-dependent decline in learning and memory capabilities among the Pb-exposed mice. Histopathological examination of the hippocampal tissue revealed tell-tale signs of AD-like neurodegeneration, characterized by the accumulation of amyloid plaques and neurofibrillary tangles. At the molecular level, a significant upregulation of AD-associated genes, namely amyloid precursor protein (APP), β-secretase 1 (BACE1), and tau, was observed in the hippocampal tissue of Pb-exposed mice. This was accompanied by a corresponding surge in the protein levels of APP, BACE1, amyloid-β (Aβ), and phosphorylated tau (p-tau), further implicating Pb in the dysregulation of these key AD markers. The expression of CDR1as, a long non-coding RNA implicated in AD pathogenesis, was found to be suppressed in Pb-exposed mice. This observation suggests a potential mechanistic link between Pb-induced neurotoxicity and the dysregulation of the CDR1as/miR-671 axis, which warrants further investigation. Moreover, our study identified a dose-dependent alteration in the intracellular and extracellular levels of the transcription factor nuclear factor-kappa B (NF-κB). This finding implicates Pb in the modulation of NF-κB signaling, a pathway that plays a pivotal role in neuroinflammation and neurodegeneration. In conclusion, our findings underscored the deleterious effects of Pb exposure on the CNS, leading to the development of AD-like pathology. The observed modulation of NF-κB signaling and miR-671/CDR1as regulation provides a plausible mechanistic framework for understanding the neurotoxic effects of Pb and its potential contribution to AD pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。