Exosomes from M2-polarized macrophages relieve oxygen/glucose deprivation/normalization-induced neuronal injury by activating the Nrf2/HO-1 signaling

M2 极化巨噬细胞的外泌体通过激活 Nrf2/HO-1 信号传导缓解氧/葡萄糖缺乏/正常化引起的神经元损伤

阅读:6
作者:Tao Xiao, Hongtao Qu, Zhiqing Zeng, Chuanghua Li, Juan Wan

Abstract

Stroke is a life-threatening neurological disorder with limited therapeutic efficacy. Previous studies have demonstrated that macrophages play an important role in brain injury after a stroke. However, its underlying mechanism remains unclear and the role of exosomes derived from M2-polarized macrophages (M2-Exo) in ischemic stroke has not yet been reported. In this study, we established an in vitro oxygen/glucose deprivation and re-oxygen/glucose (OGD/R) model to investigate the potential role of M2-Exo in protecting HT22 neurons against ischemia-reperfusion injury. Interleukin-4 was used to induce the M2 phenotype in macrophages, following which the exosomes were isolated from the supernatant of M2-polarized macrophages and identified by western blotting, transmission electron microscopy, and nanoparticle tracking analysis. After co-incubation with M2-Exo, OGD/R-induced neuronal injury in HT22 cells was improved, accompanied by increased cell viability and decreased lactate dehydrogenase release. In addition, the increase in percentage of terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling-positive cells in OGD/R-treated HT22 cells was attenuated after incubation with M2-Exo. M2-Exo treatment also suppressed reactive oxygen species and malondialdehyde production and improved the reduction of superoxide dismutase activity. Moreover, M2-Exo treatment was found to activate the nuclear factor erythroid related factor 2 (Nrf2)/heme-oxygenase-1 (HO-1) signaling pathway in OGD/R-treated HT22 neurons. Importantly, inhibition of Nrf2 by ML385 partially reversed the protective effects of M2-Exo against OGD/R-induced oxidative damage. Taken together, these data demonstrated that M2-Exo exerted protective effects against OGD/R-induced oxidative damage in HT22 neurons, which was mediated by the activation of Nrf2/HO-1 signaling. Hence, our findings provide a promising therapeutic approach for ischemic stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。