Activation of enkephalinergic (Enk) interneurons in the central amygdala (CeA) buffers the behavioral effects of persistent pain

中央杏仁核 (CeA) 中脑啡肽能 (Enk) 中间神经元的激活可缓解持续性疼痛的行为影响

阅读:4
作者:Tanvi Paretkar, Eugene Dimitrov

Abstract

Enk neurons in CeA modulate the activity of the amygdala projection neurons and it is very likely that changes of Enk signaling cause the heightened anxiety that accompanies chronic pain. We use chemogenetics and transgenic mice to investigate the effects of acute and continuous activation of the amygdala Enk neurons on persistent pain and anxiodepressive-like behavior in mice. Enk-cre mice were injected bilaterally into the CeA with cre-activated AAV-DREADD/Gq/mCherry, while neuropathic pain was induced by sciatic nerve constriction. A single injection of DREADD's ligand CNO decreased the anxiety-like behavior in both, uninjured mice and in mice with neuropathic pain and produced robust analgesia that lasted for 24 h. Furthermore, the activation of Enk neurons by the DREADD ligand led to increased c-Fos expression in PKC-δ interneurons of the CeA and in non-serotonergic neurons in the ventrolateral periaqueductal gray (vlPAG), a brain structure that is an essential part of the descending pain inhibitory system. Next, we added CNO to the drinking water of the experimental mice for 14 days in order to assess the effects of continuous activation of CeA Enk interneurons on anxiodepressive-like behavior, which is affected by chronic pain. The prolonged activation of the CeA Enk interneurons reduced neohypophagia in the novelty suppressed feeding test and increased ΔFosB (a marker for sustained neuronal activation) in the vlPAG of mice with chronic pain. All together, the results of our experiments point to an important role of the CeA Enk neurons in the control of both nociception and emotion. Activation of Enk neurons resulted in sustained analgesia accompanied by anxiolysis and antidepressant effects. Very likely, these effects of CeA Enk neurons are result of the activation of vlPAG, a brain region that is essential not only for descending inhibition of pain but it is also a core element in the resilience to stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。