Spironolactone Ameliorates Senescence and Calcification by Modulating Autophagy in Rat Tendon-Derived Stem Cells via the NF- κ B/MAPK Pathway

螺内酯通过 NF- κ B/MAPK 通路调节大鼠肌腱衍生干细胞的自噬,改善衰老和钙化

阅读:4
作者:Kai Xu, Changjian Lin, Diana Ma, Mengyao Chen, Xing Zhou, Yuzhe He, Safwat Adel Abdo Moqbel, Chiyuan Ma, Lidong Wu

Abstract

Tendinopathy is a disabling musculoskeletal disease, the pathological process of which is tightly associated with inflammation. Spironolactone (SP) has been widely used as a diuretic in clinical practice. Recently, SP has shown anti-inflammatory features in several diseases. Tendon-derived stem cells (TDSCs), a subset cell type from tendon tissue possessing clonogenic capacity, play a vital role in the pathological process of tendinopathy. In the present study, the protective effect of SP on TDSCs was demonstrated under simulated tendinopathy conditions both in vitro and in vivo. SP contributed to the maintenance of TDSC-specific genes or proteins, while suppressing the interleukin- (IL-) 1β-induced overexpression of inflammation-mediated factors. Additionally, IL-1β-induced cellular senescence in TDSCs was inhibited, while autophagy was enhanced, as determined via β-galactosidase activity, western blot (WB), and quantitative real-time polymerase chain reaction analysis. With the aid of several emerging bioinformatics tools, the mitogen-activated protein kinase (MAPK) pathway likely participated in the effect of SP, which was further validated through WB analysis and the use of MAPK agonist. Immunofluorescence analysis and an NF-κB agonist were used to confirm the inhibitory effect of SP on IL-1β-induced activation of the NF-κB pathway. X-ray, immunofluorescence, immunohistochemistry, hematoxylin and eosin staining, histological grades, and Masson staining showed that SP ameliorated tendinopathy in an Achilles tenotomy (AT) rat model in vivo. This work elucidates the protective role of SP on the pathological process of tendinopathy both in vitro and in vivo, indicating a potential therapeutic strategy for tendinopathy treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。