Hypoxia induces HT-22 neuronal cell death via Orai1/CDK5 pathway-mediated Tau hyperphosphorylation

缺氧通过 Orai1/CDK5 通路介导的 Tau 过度磷酸化诱导 HT-22 神经元细胞死亡

阅读:6
作者:Binbin Fang, Qing Zhao, Weiming Ling, Yuechun Zhang, Mengmeng Ou

Abstract

Hypoxia and apoptosis are involved in the pathogenesis of Alzheimer's disease (AD). Hypoxia induces the formation of amyloid precursor protein in neurons, leading to the abnormal deposition of β-amyloid protein and hyperphosphorylation of Tau. Such changes increase the risk of AD. In the present study, a cellular model of hypoxia-induced AD was established by exposing HT-22 mouse hippocampal neurons to the chemical hypoxia-mimicking agent cobalt chloride (CoCl2). It was found that hypoxia increased neuronal apoptosis. Hypoxia caused an abnormal increase in the expression of the intracellular calcium channel protein Orai1 and cyclin-dependent kinase 5 (CDK5), resulting in hyperphosphorylation of Tau. Treatment with small-interfering RNA against Orai1 (siOrai1) or an Orai1-overexpression plasmid effectively intervened the CDK5-mediated hyperphosphorylation of Tau. In summary, following hypoxic injury of neuron, the Orai1-induced expression of CDK5 leads to Tau hyperphosphorylation. Tau hyperphosphorylation is an important pathophysiological manifestation in AD patients. These results indicated that hypoxia induces HT-22 cell death by Orai1/CDK5 pathway mediated Tau hyperphosporylation. This study simulated the pathological process associated with AD and proposed that hypoxia of intravascular cells with normal blood oxygen saturation might be one of a pathogenic mechanisms of AD. Therefore, this work may provide a new theoretical basis for AD prevention and treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。