Aims
Microvascular insufficiency takes a critical role in the development of diabetic cardiomyopathy (DCM). So this study was designed to investigate the effects of Neuregulin-1 (NRG-1) treatment on myocardial angiogenesis and the changes of VEGF/Flk1 and Ang-1/Tie-2 signaling in the rat model of DCM.
Background/aims
Microvascular insufficiency takes a critical role in the development of diabetic cardiomyopathy (DCM). So this study was designed to investigate the effects of Neuregulin-1 (NRG-1) treatment on myocardial angiogenesis and the changes of VEGF/Flk1 and Ang-1/Tie-2 signaling in the rat model of DCM.
Conclusions
NRG-1 can increase the myocardial angiogenesis of DCM, probably via the direct effects of NRG-1 and via the increasing expression of VEGF and Ang-1. These findings may contribute to developing a novel approach to reverse the impaired angiogenic responses in diabetes or coronary artery disease.
Methods
Diabetic rats were induced by a single intraperitoneal injection of Streptozotocin. 12 weeks after the diabetes induction, the rats with NRG-1 treatment were treated with tail vein injection of NRG-1 at the dose of 10µg/kg/d for consecutive 10 days. Cardiac function was assessed using catheter MPA cardiac function analysis system. Myocardial blood flow (MBF) was assessed with stable-isotope labeled microspheres. Capillary density was measured by CD31 immunohistochemistry. The protein expression and receptors phosphorylation were assessed using western blot.
Results
Left ventricular function, capillary density and MBF were significantly reduced in DCM group when compared with those in the control group (P< 0.01, P< 0.01 and P< 0.05 respectively). Left ventricular function and capillary density were significantly increased in NRG-1 treatment group when compared with those in the DCM group (P< 0.05 and P< 0.05 respectively). The expression of VEGF and Ang-1 and the phosphorylation of Flk1 and Tie-1 were significantly decreased in DCM group as compared with those in the control group. However, those in the NRG-1 treatment group were significantly increased as compared with those in the DCM group. In vitro, NRG-1 treatment increased significantly the expression of VEGF and Ang-1 in human coronary artery smooth muscle cells. Conclusions: NRG-1 can increase the myocardial angiogenesis of DCM, probably via the direct effects of NRG-1 and via the increasing expression of VEGF and Ang-1. These findings may contribute to developing a novel approach to reverse the impaired angiogenic responses in diabetes or coronary artery disease.
