Reduction of AMPA receptor activity on mature oligodendrocytes attenuates loss of myelinated axons in autoimmune neuroinflammation

成熟少突胶质细胞上 AMPA 受体活性的降低可减轻自身免疫性神经炎症中髓鞘轴突的丢失

阅读:6
作者:Kirsten S Evonuk, Ryan E Doyle, Carson E Moseley, Ian M Thornell, Keith Adler, Amanda M Bingaman, Mark O Bevensee, Casey T Weaver, Booki Min, Tara M DeSilva

Abstract

Glutamate dysregulation occurs in multiple sclerosis (MS), but whether excitotoxic mechanisms in mature oligodendrocytes contribute to demyelination and axonal injury is unexplored. Although current treatments modulate the immune system, long-term disability ensues, highlighting the need for neuroprotection. Glutamate is elevated before T2-visible white matter lesions appear in MS. We previously reported that myelin-reactive T cells provoke microglia to release glutamate from the system xc - transporter promoting myelin degradation in experimental autoimmune encephalomyelitis (EAE). Here, we explore the target for glutamate in mature oligodendrocytes. Most glutamate-stimulated calcium influx into oligodendrocyte somas is AMPA receptor (AMPAR)-mediated, and genetic deletion of AMPAR subunit GluA4 decreased intracellular calcium responses. Inducible deletion of GluA4 on mature oligodendrocytes attenuated EAE and loss of myelinated axons was selectively reduced compared to unmyelinated axons. These data link AMPAR signaling in mature oligodendrocytes to the pathophysiology of myelinated axons, demonstrating glutamate regulation as a potential neuroprotective strategy in MS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。