Hydrodynamic Radii of Ranibizumab, Aflibercept and Bevacizumab Measured by Time-Resolved Phosphorescence Anisotropy

通过时间分辨磷光各向异性测量雷珠单抗、阿柏西普和贝伐单抗的流体动力学半径

阅读:7
作者:Liisa M Hirvonen, Gilbert O Fruhwirth, Nishanthan Srikantha, Matthew J Barber, James E Neffendorf, Klaus Suhling, Timothy L Jackson

Conclusions

Time-resolved phosphorescence anisotropy is a relatively simple and straightforward method that allows experimental measurement of the hydrodynamic radius of individual proteins, and is superior to theoretical calculations which cannot give the required accuracy for a particular protein.

Methods

Ruthenium-based dye Ru(bpy)2(mcbpy - O - Su - ester)(PF6)2, whose lifetime of several hundred nanoseconds is comparable to the rotational correlation time of these drugs in buffer, was used as a label. The hydrodynamic radii were calculated from the rotational correlation times of the Ru(bpy)2(mcbpy - O - Su - ester)(PF6)2-labelled drugs obtained with time-resolved phosphorescence anisotropy measurements in buffer/glycerol solutions of varying viscosity.

Purpose

To measure the hydrodynamic radii of intravitreal anti-VEGF drugs ranibizumab, aflibercept and bevacizumab with μs time-resolved phosphorescence anisotropy.

Results

The measured radii of 2.76±0.04 nm for ranibizumab, 3.70±0.03 nm for aflibercept and 4.58±0.01 nm for bevacizumab agree with calculations based on molecular weight and other experimental measurements. Conclusions: Time-resolved phosphorescence anisotropy is a relatively simple and straightforward method that allows experimental measurement of the hydrodynamic radius of individual proteins, and is superior to theoretical calculations which cannot give the required accuracy for a particular protein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。