New cell delivery system CellSaic with adipose-derived stromal cells promotes functional angiogenesis in critical limb ischemia model mice

新型细胞输送系统 CellSaic 结合脂肪来源的基质细胞促进严重肢体缺血模型小鼠的功能性血管生成

阅读:6
作者:Hideki Tanioka, Shigeru Miyagawa, Daisuke Mori, Ken-Ichi Watanabe, Takayoshi Ueno, Koichi Toda, Takashi Shibuya, Toru Kuratani, Yoshiki Sawa

Abstract

Current therapies for patients with critical limb ischemia have not reduced amputation risk owing to poor cell engraftment. The recombinant peptide Cellnest increases the engraftment rate of administered cells by forming a complex with the cells (CellSaic). We hypothesized that CellSaic containing adipose-derived stromal cells (ADSCs) could improve lower limb blood flow better than ADSCs alone, resulting in better transplanted cell engraftment. ADSCs were extracted from 8-week-old C57BL/6N mice. Thirty-two critical limb ischemia model mice were established by ligating femoral arteries. They were divided into CellSaic (n = 11), ADSC (n = 10), saline (n = 9), and Cellnest (n = 9) groups. Blood flow rate (affected side blood flow / healthy side blood flow × 100%) was evaluated using a laser Doppler blood flow meter every week. Mice were euthanized on day 28 for histological evaluation. Compared with the ADSC group (54.5 ± 17.2%), treated side blood flow rate of the CellSaic group (78.0 ± 24.9%) showed significant improvement on day 28 after administration (p < 0.05). CD31 staining showed significantly higher number of capillary vessels in the CellSaic group (53.0 ± 8.9 cells/mm3) than in the ADSC group (43.0 ± 6.8 cells/mm3) (p < 0.05). Fluorescent staining showed significantly higher number of arterioles containing both CD31 and αSMA double-positive cells in the CellSaic group than in the ADSC group (p < 0.05). CellSaic containing ADSCs exhibited superiority to ADSC transplantation alone in promoting functional angiogenesis, suggesting its potential in improving clinical outcomes of angiogenic therapy for ischemic limbs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。