Endothelial cells enhance prostate cancer metastasis via IL-6→androgen receptor→TGF-β→MMP-9 signals

内皮细胞通过 IL-6→雄激素受体→TGF-β→MMP-9 信号增强前列腺癌转移

阅读:5
作者:Xiaohai Wang, Soo Ok Lee, Shujie Xia, Qi Jiang, Jie Luo, Lei Li, Shuyuan Yeh, Chawnshang Chang

Abstract

Although the potential roles of endothelial cells in the microvascules of prostate cancer during angiogenesis have been documented, their direct impacts on the prostate cancer metastasis remain unclear. We found that the CD31-positive and CD34-positive endothelial cells are increased in prostate cancer compared with the normal tissues and that these endothelial cells were decreased upon castration, gradually recovered with time, and increased after prostate cancer progressed into the castration-resistant stage, suggesting a potential linkage of these endothelial cells with androgen deprivation therapy. The in vitro invasion assays showed that the coculture of endothelial cells with prostate cancer cells significantly enhanced the invasion ability of the prostate cancer cells. Mechanism dissection found that coculture of prostate cancer cells with endothelial cells led to increased interleukin (IL)-6 secretion from endothelial cells, which may result in downregulation of androgen receptor (AR) signaling in prostate cancer cells and then the activation of TGF-β/matrix metalloproteinase-9 (MMP-9) signaling. The consequences of the IL-6→AR→TGFβ→MMP-9 signaling pathway might then trigger the increased invasion of prostate cancer cells. Blocking the IL-6→AR→TGFβ→MMP-9 signaling pathway either by IL-6 antibody, AR-siRNA, or TGF-β1 inhibitor all interrupted the ability of endothelial cells to influence prostate cancer invasion. These results, for the first time, revealed the important roles of endothelial cells within the prostate cancer microenvironment to promote the prostate cancer metastasis and provide new potential targets of IL-6→AR→TGFβ→MMP-9 signals to battle the prostate cancer metastasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。