Expression of leukemia-associated fusion proteins increases sensitivity to histone deacetylase inhibitor-induced DNA damage and apoptosis

白血病相关融合蛋白的表达增加了对组蛋白去乙酰化酶抑制剂诱导的 DNA 损伤和细胞凋亡的敏感性

阅读:7
作者:Luca A Petruccelli, Filippa Pettersson, Sonia V Del Rincón, Cynthia Guilbert, Jonathan D Licht, Wilson H Miller Jr

Abstract

Histone deacetylase inhibitors (HDI) show activity in a broad range of hematologic and solid malignancies, yet the percentage of patients in any given malignancy who experience a meaningful clinical response remains small. In this study, we sought to investigate HDI efficacy in acute myeloid leukemia (AML) cells expressing leukemia-associated fusion proteins (LAFP). HDIs have been shown to induce apoptosis, in part, through accumulation of DNA damage and inhibition of DNA repair. LAFPs have been correlated with a DNA repair-deficient phenotype, which may make them more sensitive to HDI-induced DNA damage. We found that expression of the LAFPs PLZF-RARα, PML-RARα, and RUNX1-ETO (AML1-ETO) increased sensitivity to DNA damage and apoptosis induced by the HDI vorinostat. The increase in apoptosis correlated with an enhanced downregulation of the prosurvival protein BCL2. Vorinostat also induced expression of the cell-cycle regulators p19(INK4D) and p21(WAF1) and triggered a G2-M cell cycle arrest to a greater extent in LAFP-expressing cells. The combination of LAFP and vorinostat further led to a greater downregulation of several base excision repair (BER) enzymes. These BER genes represent biomarker candidates for response to HDI-induced DNA damage. Notably, repair of vorinostat-induced DNA double-strand breaks was found to be impaired in PLZF-RARα-expressing cells, suggesting a mechanism by which LAFP expression and HDI treatment cooperate to cause an accumulation of damaged DNA. These data support the continued study of HDI-based treatment regimens in LAFP-positive AMLs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。