JUMPg: An Integrative Proteogenomics Pipeline Identifying Unannotated Proteins in Human Brain and Cancer Cells

JUMPg:一种综合蛋白质组学流程,用于识别人类大脑和癌细胞中未注释的蛋白质

阅读:10
作者:Yuxin Li, Xusheng Wang, Ji-Hoon Cho, Timothy I Shaw, Zhiping Wu, Bing Bai, Hong Wang, Suiping Zhou, Thomas G Beach, Gang Wu, Jinghui Zhang, Junmin Peng

Abstract

Proteogenomics is an emerging approach to improve gene annotation and interpretation of proteomics data. Here we present JUMPg, an integrative proteogenomics pipeline including customized database construction, tag-based database search, peptide-spectrum match filtering, and data visualization. JUMPg creates multiple databases of DNA polymorphisms, mutations, splice junctions, partially trypticity, as well as protein fragments translated from the whole transcriptome in all six frames upon RNA-seq de novo assembly. We use a multistage strategy to search these databases sequentially, in which the performance is optimized by re-searching only unmatched high-quality spectra and reusing amino acid tags generated by the JUMP search engine. The identified peptides/proteins are displayed with gene loci using the UCSC genome browser. Then, the JUMPg program is applied to process a label-free mass spectrometry data set of Alzheimer's disease postmortem brain, uncovering 496 new peptides of amino acid substitutions, alternative splicing, frame shift, and "non-coding gene" translation. The novel protein PNMA6BL specifically expressed in the brain is highlighted. We also tested JUMPg to analyze a stable-isotope labeled data set of multiple myeloma cells, revealing 991 sample-specific peptides that include protein sequences in the immunoglobulin light chain variable region. Thus, the JUMPg program is an effective proteogenomics tool for multiomics data integration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。