MCL restrained ROS/AKT/ASAH1 pathway to therapy tamoxifen resistance breast cancer by stabilizing NRF2

MCL 通过稳定 NRF2 抑制 ROS/AKT/ASAH1 通路来治疗他莫昔芬耐药乳腺癌

阅读:7
作者:Xiao Han, Yupeng Zhang, Yin Li, Zhoujun Lin, Zhenkun Fu, Changjun Wang, Shengjie Zhang, Di Shao, Chenggang Li

Abstract

Tamoxifen resistance is a common and difficult problem in the clinical treatment of breast cancer (BC). As a novel antitumor agent, Micheliolide (MCL) has shown a better therapeutic effect on tumours; however, little is known about MCL and its role in BC therapy. With tamoxifen stimulation, drug-resistant BC cells MCF7TAMR and T47DTAMR obtained a high oxidative status and Amidohydrolase 1 (ASAH1) was abnormally activated. The inhibition of ASAH1 rescued the sensitivity of resistant cells to tamoxifen. We found that MCL inhibited the expression of ASAH1 and cell proliferation, especially in MCF7TAMR and T47DTAMR cells. The high oxidative stress status of resistant cells stimulated the expression of ASAH1 by positively regulating AKT, which was restrained by MCL. MCL activated NRF2 by directly binding to KEAP1 and promoting the antioxidant level of tamoxifen-resistant (TAMR) cells. In addition, ACT001, the prodrug of MCL, significantly inhibited the tumour growth of TAMR cells in preclinical xenograft tumour models. In conclusion, ASAH1 mediates tamoxifen resistance in ER-positive BC cells. MCL could activate the cellular antioxidant system via NRF2/KEAP1 and inhibit ASAH1 expression through the ROS/AKT signalling pathway, thus suppressing cell proliferation. MCL could be used as a potential treatment for TAMR-BC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。