Adaptation of striated muscles to Wolframin deficiency in mice: Alterations in cellular bioenergetics

小鼠横纹肌对 Wolframin 缺乏的适应:细胞生物能量学的改变

阅读:4
作者:Kersti Tepp, Marju Puurand, Natalja Timohhina, Jekaterina Aid-Vanakova, Indrek Reile, Igor Shevchuk, Vladimir Chekulayev, Margus Eimre, Nadežda Peet, Lumme Kadaja, Kalju Paju, Tuuli Käämbre

Background

Wolfram syndrome (WS), caused by mutations in WFS1 gene, is a multi-targeting disease affecting multiple organ systems. Wolframin is localized in the membrane of the endoplasmic reticulum (ER), influencing Ca2+ metabolism and ER interaction with mitochondria, but the exact role of the protein remains unclear. In this study we aimed to characterize alterations in energy metabolism in the cardiac and in the oxidative and glycolytic skeletal muscles in Wfs1-deficiency.

Conclusions

Wfs1-deficiency in both cardiac and skeletal muscles results in functional alterations of energy transport from mitochondria to ATP-ases. There was a substrate-dependent decrease in the maximal Complex I -linked respiratory capacity of the electron transport system in muscles of Wfs1 KO mice. Moreover, in cardiac and gastrocnemius white muscles a decrease in the function of one pathway were balanced by the increase in the activity of the parallel pathway. General significance: This work provides new insights to the muscle involvement at early stages of metabolic syndrome like WS as well as developing glucose intolerance.

Methods

Alterations in the bioenergetic profiles in the cardiac and skeletal muscles of Wfs1-knock-out (KO) male mice and their wild type male littermates were determined using high resolution respirometry, quantitative RT-PCR, NMR spectroscopy, and immunofluorescence confocal microscopy.

Results

Oxygen consumption without ATP synthase activation (leak) was significantly higher in the glycolytic muscles of Wfs1 KO mice compared to wild types. ADP-stimulated respiration with glutamate and malate was reduced in the Wfs1-deficient cardiac as well as oxidative and glycolytic skeletal muscles. Conclusions: Wfs1-deficiency in both cardiac and skeletal muscles results in functional alterations of energy transport from mitochondria to ATP-ases. There was a substrate-dependent decrease in the maximal Complex I -linked respiratory capacity of the electron transport system in muscles of Wfs1 KO mice. Moreover, in cardiac and gastrocnemius white muscles a decrease in the function of one pathway were balanced by the increase in the activity of the parallel pathway. General significance: This work provides new insights to the muscle involvement at early stages of metabolic syndrome like WS as well as developing glucose intolerance.

Significance

This work provides new insights to the muscle involvement at early stages of metabolic syndrome like WS as well as developing glucose intolerance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。