Astaxanthin suppresses MPP(+)-induced oxidative damage in PC12 cells through a Sp1/NR1 signaling pathway

虾青素通过Sp1/NR1信号通路抑制MPP(+)诱导的PC12细胞氧化损伤

阅读:4
作者:Qinyong Ye, Xiaodong Zhang, Bixia Huang, Yuangui Zhu, Xiaochun Chen

Conclusion

ATX inhibited oxidative stress induced by MPP+ in PC12 cells, via the SP1/NR1 signaling pathway.

Methods

Mature, differentiated PC12 cells treated with MPP+ were used as an in vitro cell model. The MTT assay was used to investigate cell viability after ATX treatment, and western blot analysis was used to observe Sp1 (activated transcription factor 1) and NR1 (NMDA receptor subunit 1) protein expression, real-time PCR was used to monitor Sp1 and NR1 mRNA, and cell immunofluorescence was used to determine the location of Sp1 and NR1 protein and the nuclear translocation of Sp1.

Objective

To investigate astaxanthin (ATX) neuroprotection, and its mechanism, on a 1-methyl-4-phenyl-pyridine ion (MPP+)-induced cell model of Parkinson's disease.

Results

PC12 cell viability was significantly reduced by MPP+ treatment. The expression of Sp1 and NR1 mRNA and protein were increased compared with the control (p < 0.01). Following co-treatment with ATX and MPP+, cell viability was significantly increased, and Sp1 and NR1 mRNA and protein were decreased, compared with the MPP+ groups (p < 0.01). In addition, mithracycin A protected PC12 cells from oxidative stress caused by MPP+ by specifically inhibiting the expression of Sp1. Moreover, cell immunofluorescence revealed that ATX could suppress Sp1 nuclear transfer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。