Inhibition of hypoxia inducible factor 1 by YC-1 attenuates tissue plasminogen activator induced hemorrhagic transformation by suppressing HMGB1/TLR4/NF-κB mediated neutrophil infiltration in thromboembolic stroke rats

YC-1 抑制缺氧诱导因子 1,通过抑制血栓栓塞性中风大鼠的 HMGB1/TLR4/NF-κB 介导的中性粒细胞浸润,减轻组织型纤溶酶原激活剂诱发的出血性转化

阅读:4
作者:Linglei Kong, Yinzhong Ma, Zhiyuan Wang, Nannan Liu, Guodong Ma, Chengdi Liu, Ruili Shi, Guanhua Du

Abstract

Hemorrhagic transformation (HT) is a frequent complication of ischemic stroke after thrombolytic therapy and seriously affects the prognosis of stroke. Due to the limited therapeutic window and hemorrhagic complications, tissue plasminogen activator (t-PA) is underutilized in acute ischemic stroke. Currently, there are no clinically effective drugs to decrease the incidence of t-PA-induced HT. Hypoxia-inducible factor 1 (HIF-1) is an important transcription factor that maintains oxygen homeostasis and mediates neuroinflammation under hypoxia. However, the effect of HIF-1 on t-PA-induced HT is not clear. The aim of this study was to investigate the role of HIF-1 in t-PA-induced HT by applying YC-1, an inhibitor of HIF-1. In the present study, we found that HIF-1 expression was significantly increased in ischemic brain tissue after delayed t-PA treatment and was mainly localized in neurons and endothelial cells. Inhibition of HIF-1 by YC-1 improved infarct volume and neurological deficits. YC-1 inhibited matrix metalloproteinase protein expression, increased tight junction protein expression, and ameliorated BBB disruption and the occurrence of HT. Furthermore, YC-1 suppressed the release of inflammatory factors, neutrophil infiltration and the activation of the HMGB1/TLR4/NF-κB signaling pathway. These results demonstrated that inhibition of HIF-1 could protect BBB integrity by suppressing HMGB1/TLR4/NF-κB-mediated neutrophil infiltration, thereby reducing the risk of t-PA-induced HT. Thus, HIF-1 may be a potential therapeutic target for t-PA-induced HT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。