Transcriptomic integration of D4R and MOR signaling in the rat caudate putamen

大鼠尾壳核中 D4R 和 MOR 信号的转录组整合

阅读:5
作者:Alejandra Valderrama-Carvajal, Haritz Irizar, Belén Gago, Haritz Jiménez-Urbieta, Kjell Fuxe, María C Rodríguez-Oroz, David Otaegui, Alicia Rivera

Abstract

Morphine binding to opioid receptors, mainly to μ opioid receptor (MOR), induces alterations in intracellular pathways essential to the initial development of addiction. The activation of the dopamine D4 receptor (D4R), which is expressed in the caudate putamen (CPu), mainly counteracts morphine-induced alterations in several molecular networks. These involve transcription factors, adaptive changes of MOR signaling, activation of the nigrostriatal dopamine pathway and behavioural effects, underlining functional D4R/MOR interactions. To shed light on the molecular mechanisms implicated, we evaluated the transcriptome alterations following acute administration of morphine and/or PD168,077 (D4R agonist) using whole-genome microarrays and a linear regression-based differential expression analysis. The results highlight the development of a unique transcriptional signature following the co-administration of both drugs that reflects a countereffect of PD168,077 on morphine effects. A KEGG pathway enrichment analysis using GSEA identified 3 pathways enriched positively in morphine vs control and negatively in morphine + PD168,077 vs morphine (Ribosome, Complement and Coagulation Cascades, Systemic Lupus Erythematosus) and 3 pathways with the opposite enrichment pattern (Alzheimer's Disease, Neuroactive Ligand Receptor Interaction, Oxidative Phosphorilation). This work supports the massive D4R/MOR functional integration at the CPu and provides a gateway to further studies on the use of D4R drugs to modulate morphine-induced effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。