Suitability of transiently expressed antibodies for clinical studies: product quality consistency at different production scales

瞬时表达抗体在临床研究中的适用性:不同生产规模下的产品质量一致性

阅读:1
作者:Sara Rodriguez-Conde ,Sophie Inman ,Viv Lindo ,Leanne Amery ,Alison Tang ,Uche Okorji-Obike ,Wenjuan Du ,Berend-Jan Bosch ,Paul J Wichgers Schreur ,Jeroen Kortekaas ,Isabel Sola ,Luis Enjuanes ,Laura Kerry ,Katharina Mahal ,Martyn Hulley ,Olalekan Daramola

Abstract

Transgenic human monoclonal antibodies derived from humanized mice against different epitopes of the Middle East respiratory syndrome coronavirus (MERS-CoV), and chimeric llama-human bispecific heavy chain-only antibodies targeting the Rift Valley fever virus (RVFV), were produced using a CHO-based transient expression system. Two lead candidates were assessed for each model virus before selecting and progressing one lead molecule. MERS-7.7G6 was used as the model antibody to demonstrate batch-to-batch process consistency and, together with RVFV-107-104, were scaled up to 200 L. Consistent expression titers were obtained in different batches at a 5 L scale for MERS-7.7G6. Although lower expression levels were observed for MERS-7.7G6 and RVFV-107-104 during scale up to 200 L, product quality attributes were consistent at different scales and in different batches. In addition to this, peptide mapping data suggested no detectable sequence variants for any of these candidates. Functional assays demonstrated comparable neutralizing activity for MERS-7.7G6 and RVFV-107-104 generated at different production scales. Similarly, MERS-7.7G6 batches generated at different scales were shown to provide comparable protection in mouse models. Our study demonstrates that a CHO-based transient expression process is capable of generating consistent product quality at different production scales and thereby supports the potential of using transient gene expression to accelerate the manufacturing of early clinical material. Keywords: CHO cells; MERS; RVFV; bunyavirus; coronavirus; product quality attributes; scalability; transient gene expression; virus; zoonosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。