Multispecificity of immunoglobulin M antibodies raised against advanced glycation end products: involvement of electronegative potential of antigens

针对晚期糖基化终产物产生的免疫球蛋白 M 抗体的多特异性:抗原负电势的参与

阅读:6
作者:Miho Chikazawa, Natsuki Otaki, Takahiro Shibata, Hiroaki Miyashita, Yoshichika Kawai, Shoichi Maruyama, Shinya Toyokuni, Yasuyuki Kitaura, Tsukasa Matsuda, Koji Uchida

Background

Advanced glycation end products (AGEs) can act as neoantigens to trigger immune responses.

Conclusion

There is a close relationship between the formation of AGEs and innate immune responses. Significance: Our findings highlight AGEs and related modified proteins as a source of multispecific natural antibodies Advanced glycation end products (AGEs) are a heterogeneous and complex group of compounds that are formed when reducing sugars, such as dehydroascorbic acid, react in a nonenzymatic way with amino acids in proteins and other macromolecules. AGEs are prevalent in the diabetic vasculature and contribute to the development of atherosclerosis. The presence and accumulation of AGEs in many different cell types affect the extracellular and intracellular structure and function. In the present study, we studied the immune response to the dehydroascorbic acid-derived AGEs and provide multiple lines of evidence suggesting that the AGEs could be an endogenous source of innate epitopes recognized by natural IgM antibodies. Prominent IgM titers to the AGEs were detected in the sera of normal mice and were significantly accelerated by the immunization with the AGEs. Patients with systemic lupus erythematosus (SLE), a potentially fatal systemic autoimmune disease characterized by the increased production of autoantibodies, showed significantly higher serum levels of the IgM titer against the AGEs than healthy individuals. A progressive increase in the IgM response against the AGEs was also observed in the SLE-prone mice. Strikingly, a subset of monoclonal antibodies, showing a specificity toward the AGEs, prepared from normal mice immunized with the AGEs and from the SLE mice cross-reacted with the double-stranded DNA. Moreover, they also cross-reacted with several other modified proteins, including the acetylated proteins, suggesting that the multiple specificity of the antibodies might be ascribed, at least in part, to the increased electronegative potential of the proteins. These findings suggest that the protein modification by the endogenous carbonyl compounds, generating electronegative proteins, could be a source of multispecific natural antibodies.

Results

Natural IgM antibodies against AGEs recognize multiple molecules, including DNA and chemically modified proteins.

Significance

Our findings highlight AGEs and related modified proteins as a source of multispecific natural antibodies Advanced glycation end products (AGEs) are a heterogeneous and complex group of compounds that are formed when reducing sugars, such as dehydroascorbic acid, react in a nonenzymatic way with amino acids in proteins and other macromolecules. AGEs are prevalent in the diabetic vasculature and contribute to the development of atherosclerosis. The presence and accumulation of AGEs in many different cell types affect the extracellular and intracellular structure and function. In the present study, we studied the immune response to the dehydroascorbic acid-derived AGEs and provide multiple lines of evidence suggesting that the AGEs could be an endogenous source of innate epitopes recognized by natural IgM antibodies. Prominent IgM titers to the AGEs were detected in the sera of normal mice and were significantly accelerated by the immunization with the AGEs. Patients with systemic lupus erythematosus (SLE), a potentially fatal systemic autoimmune disease characterized by the increased production of autoantibodies, showed significantly higher serum levels of the IgM titer against the AGEs than healthy individuals. A progressive increase in the IgM response against the AGEs was also observed in the SLE-prone mice. Strikingly, a subset of monoclonal antibodies, showing a specificity toward the AGEs, prepared from normal mice immunized with the AGEs and from the SLE mice cross-reacted with the double-stranded DNA. Moreover, they also cross-reacted with several other modified proteins, including the acetylated proteins, suggesting that the multiple specificity of the antibodies might be ascribed, at least in part, to the increased electronegative potential of the proteins. These findings suggest that the protein modification by the endogenous carbonyl compounds, generating electronegative proteins, could be a source of multispecific natural antibodies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。