A protective role for <i>Drosophila</i> Filamin in nephrocytes via Yorkie mediated hypertrophy

<i>果蝇</i> 细丝蛋白通过 Yorkie 介导的肥大在肾细胞中发挥保护作用

阅读:5
作者:Sybille Koehler, Tobias B Huber, Barry Denholm

Abstract

Podocytes are specialized epithelial cells of the kidney glomerulus and are an essential part of the filtration barrier. Because of their position, they are exposed to constant biomechanical forces such as shear stress and hydrostatic pressure. These forces increase during disease, resulting in podocyte injury. It is likely podocytes have adaptative responses to help buffer against deleterious mechanical force and thus reduce injury. However, these responses remain largely unknown. Here, using the <i>Drosophila</i> model, we show the mechanosensor Cheerio (dFilamin) provides a key protective role in nephrocytes. We found expression of an activated mechanosensitive variant of Cheerio rescued filtration function and induced compensatory and hypertrophic growth in nephrocytes depleted of the nephrocyte diaphragm proteins Sns or Duf. Delineating the protective pathway downstream of Cheerio we found repression of the Hippo pathway induces nephrocyte hypertrophy, whereas Hippo activation reversed the Cheerio-mediated hypertrophy. Furthermore, we find Yorkie was activated upon expression of active Cheerio. Taken together, our data suggest that Cheerio acts via the Hippo pathway to induce hypertrophic growth, as a protective response in abnormal nephrocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。