Acute kidney injury prediction in cardiac surgery patients by a urinary peptide pattern: a case-control validation study

通过尿肽模式预测心脏手术患者急性肾损伤:病例对照验证研究

阅读:8
作者:Jochen Metzger, William Mullen, Holger Husi, Angelique Stalmach, Stefan Herget-Rosenthal, Heiner V Groesdonk, Harald Mischak, Matthias Klingele

Background

Acute kidney injury (AKI) is a prominent problem in hospitalized patients and associated with increased morbidity and mortality. Clinical medicine is currently hampered by the lack of accurate and early biomarkers for diagnosis of AKI and the evaluation of the severity of the disease. In 2010, we established a multivariate peptide marker pattern consisting of 20 naturally occurring urinary peptides to screen patients for early signs of renal failure. The current study now aims to evaluate if, in a different study population and potentially various AKI causes, AKI can be detected early and accurately by proteome analysis.

Conclusions

This study gives further proof for the general applicability of our proteomic multimarker model for early and accurate prediction of AKI irrespective of its underlying disease cause.

Methods

Urine samples from 60 patients who developed AKI after cardiac surgery were analyzed by capillary electrophoresis-mass spectrometry (CE-MS). The obtained peptide profiles were screened by the AKI peptide marker panel for early signs of AKI. Accuracy of the proteomic model in this patient collective was compared to that based on urinary neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) ELISA levels. Sixty patients who did not develop AKI served as negative controls.

Results

From the 120 patients, 110 were successfully analyzed by CE-MS (59 with AKI, 51 controls). Application of the AKI panel demonstrated an AUC in receiver operating characteristics (ROC) analysis of 0.81 (95 % confidence interval: 0.72-0.88). Compared to the proteomic model, ROC analysis revealed poorer classification accuracy of NGAL and KIM-1 with the respective AUC values being outside the statistical significant range (0.63 for NGAL and 0.57 for KIM-1). Conclusions: This study gives further proof for the general applicability of our proteomic multimarker model for early and accurate prediction of AKI irrespective of its underlying disease cause.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。