Epigenetic Silencing of Eyes Absent 4 Gene by Acute Myeloid Leukemia 1-Eight-twenty-one Oncoprotein Contributes to Leukemogenesis in t(8;21) Acute Myeloid Leukemia

急性髓系白血病 1-Eight-twenty-1 癌蛋白导致 Eyes Absent 4 基因的表观遗传沉默,导致 t(8;21) 急性髓系白血病的白血病发生

阅读:5
作者:Sai Huang, Meng-Meng Jiang, Guo-Feng Chen, Kun Qian, Hong-Hao Gao, Wei Guan, Jin-Long Shi, An-Qi Liu, Jing Liu, Bian-Hong Wang, Yong-Hui Li, Li Yu

Background

The acute myeloid leukemia 1 (AML1)-eight-twenty-one (ETO) fusion protein generated by the t(8;21)(q22;q22) translocation is considered to display a crucial role in leukemogenesis in AML. By focusing on the anti-leukemia effects of eyes absent 4 (EYA4) gene on AML cells, we investigated the biologic and molecular mechanism associated with AML1-ETO expressed in t(8;21) AML.

Conclusions

Our study identified EYA4 gene as targets for AML1-ETO and indicated it as a novel tumor suppressor gene. In addition, we provided evidence that EYA4 gene might be a novel therapeutic target and a potential candidate for treating AML1-ETO+ t (8;21) AML.

Methods

Qualitative polymerase chain reaction (PCR), quantitative reverse transcription PCR (RT-PCR), and Western blotting analysis were used to observe the mRNA and protein expression levels of EYA4 in cell lines. Different plasmids (including mutant plasmids) of dual luciferase reporter vector were built to study the binding status of AML1-ETO to the promoter region of EYA4. Chromatin immunoprecipitation assay was used to study the epigenetic silencing mechanism of EYA4. Bisulfite sequencing was applied to detect the methylation status in EYA4 promoter region. The influence of EYA4 gene in the cell proliferation, apoptosis, and cell clone-forming ability was detected by the technique of Cell Counting Kit-8, flow cytometry, and clonogenic assay.

Results

EYA4 gene was hypermethylated in AML1-ETO+ patients and its expression was down-regulated by 6-fold in Kasumi-1 and SKNO-1 cells, compared to HL-60 and SKNO-1-siA/E cells, respectively. We demonstrated that AML1-ETO triggered the epigenetic silencing of EYA4 gene by binding at AML1-binding sites and recruiting histone deacetylase 1 and DNA methyltransferases. Enhanced EYA4 expression levels inhibited cellular proliferation and suppressed cell colony formation in AML1-ETO+ cell lines. We also found EYA4 transfection increased apoptosis of Kasumi-1 and SKNO-1 cells by 1.6-fold and 1.4-fold compared to negative control, respectively. Conclusions: Our study identified EYA4 gene as targets for AML1-ETO and indicated it as a novel tumor suppressor gene. In addition, we provided evidence that EYA4 gene might be a novel therapeutic target and a potential candidate for treating AML1-ETO+ t (8;21) AML.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。