G-protein-coupled receptor agonist BV8/prokineticin-2 and STAT3 protein form a feed-forward loop in both normal and malignant myeloid cells

蛋白偶联受体激动剂 BV8/促动力蛋白-2 和 STAT3 蛋白在正常和恶性髓系细胞中形成前馈回路

阅读:5
作者:Hong Xin, Rongze Lu, Heehyoung Lee, Wang Zhang, Chunyan Zhang, Jiehui Deng, Yong Liu, Shudan Shen, Kay-Uwe Wagner, Stephen Forman, Richard Jove, Hua Yu

Background

Signaling pathways underlying BV8-mediated oncogenesis remain unknown.

Conclusion

JAK2/STAT3 signaling plays critical roles in BV8-mediated myeloid cell-dependent oncogenesis. Significance: This study identifies a novel role of BV8-STAT3 signaling in mediating cross-talk between tumor microenvironment and tumor cells. An important role of BV8 in mobilization of myeloid cells and myeloid cell-dependent angiogenesis has been established. Recently, it has also been shown that granulocyte colony-stimulating factor (G-CSF)-induced BV8 expression is STAT3 dependent in CD11b(+)Gr1(+) myeloid cells. However, the BV8 downstream signaling pathway(s) intrinsic to myeloid cells crucial for angiogenesis, and potentially also for development of cancers of myeloid origin, remains largely unknown. Here we show that BV8 activates STAT3, which is critical for regulating genes important for both tumor cell proliferation/survival and tumor angiogenesis, in both normal and malignant myeloid cells. Further, BV8-induced STAT3 activation requires Janus-activated kinase 2 (JAK2) activity as shown by both genetic and pharmacologic inhibition. Knocking down BV8 in human myeloid leukemia cells inhibits STAT3 activity and expression of STAT3 downstream angiogenic and pro-proliferation/survival genes, leading to a decrease in tumor cell viability. BV8 shRNA expressing leukemia cells exhibit reduced STAT3 activity and tumor growth in vivo. Taken together, we have delineated a signaling pathway downstream of BV8 that plays critical roles in both the tumor microenvironment and malignant myeloid cells for angiogenesis and tumor cell proliferation/survival.

Results

BV8-STAT3 forms a feed-forward loop in both normal and malignant myeloid cells and promotes tumor growth.

Significance

This study identifies a novel role of BV8-STAT3 signaling in mediating cross-talk between tumor microenvironment and tumor cells. An important role of BV8 in mobilization of myeloid cells and myeloid cell-dependent angiogenesis has been established. Recently, it has also been shown that granulocyte colony-stimulating factor (G-CSF)-induced BV8 expression is STAT3 dependent in CD11b(+)Gr1(+) myeloid cells. However, the BV8 downstream signaling pathway(s) intrinsic to myeloid cells crucial for angiogenesis, and potentially also for development of cancers of myeloid origin, remains largely unknown. Here we show that BV8 activates STAT3, which is critical for regulating genes important for both tumor cell proliferation/survival and tumor angiogenesis, in both normal and malignant myeloid cells. Further, BV8-induced STAT3 activation requires Janus-activated kinase 2 (JAK2) activity as shown by both genetic and pharmacologic inhibition. Knocking down BV8 in human myeloid leukemia cells inhibits STAT3 activity and expression of STAT3 downstream angiogenic and pro-proliferation/survival genes, leading to a decrease in tumor cell viability. BV8 shRNA expressing leukemia cells exhibit reduced STAT3 activity and tumor growth in vivo. Taken together, we have delineated a signaling pathway downstream of BV8 that plays critical roles in both the tumor microenvironment and malignant myeloid cells for angiogenesis and tumor cell proliferation/survival.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。